Power Consumption Characterization of Synthetic Benchmarks in Multicores

  • Jonathan MurañaEmail author
  • Sergio Nesmachnow
  • Santiago Iturriaga
  • Andrei Tchernykh
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 796)


This article presents an empirical evaluation of power consumption of synthetic benchmarks in multicore computing systems. The study aims at providing an insight of the main power consumption characteristics of different applications when executing over current high performance computing servers. Three types of applications are studied executing individually and simultaneously on the same server. Intel and AMD architectures are studied in an experimental setting for evaluating the overall power consumption of each application. The main results indicate the power consumption behavior has a strong dependency with the type of application. An additional performance analysis shows that the best load of the server regarding energy efficiency depends on the type of the applications, with efficiency decreasing in heavily loaded situations. These results allow characterizing applications according to power consumption, efficiency, and resource sharing, and provide useful information for resource management and scheduling policies.


Green computing Energy efficiency Multicores Computing efficiency 


  1. 1.
    Anghel, A., Vasilescu, L., Mariani, G., Jongerius, R., Dittmann, G.: An instrumentation approach for hardware-agnostic software characterization. Int. J. Parallel Prog. 44(5), 924–948 (2016)CrossRefGoogle Scholar
  2. 2.
    Brandolese, C., Corbetta, S., Fornaciari, W.: Software energy estimation based on statistical characterization of intermediate compilation code. In: International Symposium on Low Power Electronics and Design, pp. 333–338 (2011)Google Scholar
  3. 3.
    Buyya, R., Vecchiola, C., Selvi, S.: Mastering Cloud Computing: Foundations and Applications Programming. Morgan Kaufmann, San Francisco (2013)Google Scholar
  4. 4.
    Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modeling: a survey. IEEE Commun. Surv. Tutorials 18(1), 732–794 (2016)CrossRefGoogle Scholar
  5. 5.
    Du Bois, K., Schaeps, T., Polfliet, S., Ryckbosch, F., Eeckhout, L.: Sweep: evaluating computer system energy efficiency using synthetic workloads. In: 6th International Conference on High Performance and Embedded Architectures and Compilers, pp. 159–166 (2011)Google Scholar
  6. 6.
    Feng, X., Ge, R., Cameron, K.: Power and energy profiling of scientific applications on distributed systems. In: 19th IEEE International Parallel and Distributed Processing Symposium, pp. 34–44 (2005)Google Scholar
  7. 7.
    Iturriaga, S., García, S., Nesmachnow, S.: An empirical study of the robustness of energy-aware schedulers for high performance computing systems under uncertainty. In: Hernández, G., Barrios Hernández, C.J., Díaz, G., García Garino, C., Nesmachnow, S., Pérez-Acle, T., Storti, M., Vázquez, M. (eds.) CARLA 2014. CCIS, vol. 485, pp. 143–157. Springer, Heidelberg (2014). Google Scholar
  8. 8.
    Kopytov, A.: Sysbench repository Accessed 1 May 2017
  9. 9.
    Kurowski, K., Oleksiak, A., Piątek, W., Piontek, T., Przybyszewski, A., Węglarz, J.: Dcworms-a tool for simulation of energy efficiency in distributed computing infrastructures. Simul. Model. Pract. Theory 39, 135–151 (2013)CrossRefGoogle Scholar
  10. 10.
    Langer, A., Totoni, E., Palekar, U.S., Kalé, L.V.: Energy-efficient computing for HPC workloads on heterogeneous manycore chips. In: Proceedings of the Sixth International Workshop on Programming Models and Applications for Multicores and Manycores, pp. 11–19 (2015)Google Scholar
  11. 11.
    Nesmachnow, S.: Computación científica de alto desempeño en la Facultad de Ingeniería. Universidad de la República. Revista de la Asociación de Ingenieros del Uruguay, 61(1), pp. 12–15 (2010). Text in SpanishGoogle Scholar
  12. 12.
    Nesmachnow, S., Dorronsoro, B., Pecero, J., Bouvry, P.: Energy-aware scheduling on multicore heterogeneous grid computing systems. J. Grid Comput. 11(4), 653–680 (2013)CrossRefGoogle Scholar
  13. 13.
    Nesmachnow, S., Perfumo, C., Goiri, I.: Holistic multiobjective planning of datacenters powered by renewable energy. Cluster Comput. 18(4), 1379–1397 (2015)CrossRefGoogle Scholar
  14. 14.
    Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud computing. In: Conference on Power Aware Computing and Systems, vol. 10, pp. 1–5 (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jonathan Muraña
    • 1
    Email author
  • Sergio Nesmachnow
    • 1
  • Santiago Iturriaga
    • 1
  • Andrei Tchernykh
    • 2
  1. 1.Universidad de la RepúblicaMontevideoUruguay
  2. 2.CICESE Research CenterEnsenadaMexico

Personalised recommendations