Parallel Processing of Intra-cranial Electroencephalogram Readings on Distributed Memory Systems

  • Leonardo PiñeyroEmail author
  • Sergio Nesmachnow
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 796)


This article presents an approach for parallel processing of electroencephalogram readings over distributed memory systems. This is a complex problem that deals with a significantly large amount of data, especially considering that the volume of electroencephalogram readings has been growing for the last few years due to their handling in medical and health applications. Different parallelization and workload distribution techniques applied to processing intra-cranial electroencephalogram readings are studied, in order to efficiently detect whether a patient may suffer a seizure or not. More precisely, two separate approaches are presented: a first one describing a traditional Message Passing Interface implementation for cluster systems, and a second implementation using Apache Hadoop, more adapted to large-scale processing in cloud systems. The experimental evaluation performed on standard datasets demonstrates that it is possible to remarkably speedup electroencephalogram processing by applying efficient data distribution strategies. The parallel/distributed approach allows accelerating the execution time up to 22 \(\times \) when compared with the sequential version.


Feature extraction Distributed computing Large-scale processing 


  1. 1.
    Mormann, F., Andrzejak, R., Elger, C., Lehnertz, K.: Seizure prediction: the long and winding road. Brain 130(2), 314–333 (2006)CrossRefGoogle Scholar
  2. 2.
    Gadhoumi, K., Lina, J., Mormann, F., Gotman, J.: Seizure prediction for therapeutic devices: a review. J. Neurosci. Methods 260, 270–282 (2016)CrossRefGoogle Scholar
  3. 3.
    Davis, K., Sturges, B., Vite, C., Ruedebusch, V., Worrell, G., Gardner, A., Leyde, K., Sheffield, W., Litt, B.: A novel implanted device to wirelessly record and analyze continuous intracranial canine EEG. Epilepsy Res. 96(1), 116–122 (2011)CrossRefGoogle Scholar
  4. 4.
    Feldwisch-Drentrup, H., Schelter, B., Jachan, M., Nawrath, J., Timmer, J., Schulze-Bonhage, A.: Joining the benefits: combining epileptic seizure prediction methods. Epilepsia 51(8), 1598–1606 (2010)CrossRefGoogle Scholar
  5. 5.
    Foster, I.: Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering. Addison-Wesley Longman Publishing Co., Inc., Boston (1995)zbMATHGoogle Scholar
  6. 6.
    Ramgopal, S., Thome-Souza, S., Jackson, M., Kadish, N., Fernández, I., Klehm, J., Bosl, W., Reinsberger, C., Schachter, S., Loddenkemper, T.: Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy Behav. 37, 291–307 (2014)CrossRefGoogle Scholar
  7. 7.
    Ting, W., Guo-zheng, Y., Bang-hua, Y., Hong, S.: EEG feature extraction based on wavelet packet decomposition for brain computer interface. Measurement 41(6), 618–625 (2008)CrossRefGoogle Scholar
  8. 8.
    El Kassabi, H., Serhani, M., Dssouli, R.: Neurodegenerative diseases monitoring (NDM) main challenges, tendencies, and enabling big data technologies: a survey. Neurodegenerative Dis. 5(01), 158–173 (2016)Google Scholar
  9. 9.
    Jayapandian, C., Chen, C., Bozorgi, A., Lhatoo, S., Zhang, G., Sahoo, S.: Cloudwave: distributed processing of “big data” from electrophysiological recordings for epilepsy clinical research using Hadoop. In: AMIA Annual Symposium Proceedings, pp. 691–700 (2013)Google Scholar
  10. 10.
    Burns, M., Freund, Y.: Large scale electroencephalography processing with Hadoop (2013). Accessed July 2017
  11. 11.
    Nuwer, M., Comi, G., Emerson, R., Fuglsang-Frederiksen, A., Guerit, J., Hinrichs, H., Ikeda, A., Luccas, F., Rappelsberger, P.: IFCN standards for digital recording of clinical EEG. Electroencephalogr. Clin. Neurophysiol. 106(3), 259–261 (1998)CrossRefGoogle Scholar
  12. 12.
    Brinkmann, B., Wagenaar, J., Abbot, D., Adkins, P., Bosshard, S., Chen, M., Tieng, Q., He, J., Muñoz-Almaraz, F., Botella-Rocamora, P., Pardo, J.: Crowdsourcing reproducible seizure forecasting in human and canine epilepsy. Brain 139(6), 1713–1722 (2016)CrossRefGoogle Scholar
  13. 13.
    Bruhn, J., Lehmann, L., Röpcke, H., Bouillon, T., Hoeft, A.: Shannon entropy applied to the measurement of the electroencephalographic effects of desflurane. Anesthesiol.: J. Am. Soc. Anesthesiol. 95(1), 30–35 (2001)CrossRefGoogle Scholar
  14. 14.
    Bendat, J., Piersol, A.: Engineering Applications of Correlation and Spectral Analysis. Wiley-Interscience, New York (1980)zbMATHGoogle Scholar
  15. 15.
    Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the Message-passing Interface. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  16. 16.
    Dalcin, L., Paz, R., Kler, P., Cosimo, A.: Parallel distributed computing using Python. Adv. Water Resour. 34(9), 1124–1139 (2011)CrossRefGoogle Scholar
  17. 17.
    Nesmachnow, S.: Computación científica de alto desempeño en la facultad de ingeniería, universidad de la república. Revista de la Asociación de Ingenieros del Uruguay 61(1), 12–15 (2010). (Text in Spanish)Google Scholar
  18. 18.
    White, T.: How MapReduce works (Chap. 6). In: Hadoop: The Definitive Guide. O’Reilly Media Inc. (2012)Google Scholar
  19. 19.
    Dittrich, J., Quiané-Ruiz, J.: Efficient big data processing in Hadoop MapReduce. Proc. VLDB Endow. 5(12), 2014–2015 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Centro de Cálculo, Facultad de IngenieríaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations