Learning Spatio-Temporal Behavioural Sequences

  • Luca Patanè
  • Roland Strauss
  • Paolo ArenaEmail author
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Living beings are able to adapt their behaviour repertoire to environmental constraints. Among the capabilities needed for such improvement, the ability to store and retrieve temporal sequences is of particular importance. This chapter focuses on the description of an architecture based on spiking neurons, able to learn and autonomously generate a sequence of generic objects or events. The neural architecture is inspired by the insect mushroom bodies already taken into account in the previous chapters as a crucial centre for multimodal sensory integration and behaviour modulation in insects. Sequence learning is only one among a variety of functionalities that coexist within the insect brain computational model. We will propose a series of implementations that can be adopted to obtain these objectives and report the simulation results obtained. We will embed these mechanisms also in roving robots thereby proposing forward-thinking experiments.


  1. 1.
    Adeli, H., Park, H.: A neural dynamics model for structural optimization—theory. Comput. Struct. 57(3), 383–390 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ahmadkhanlou, F., Adeli, H.: Optimum cost design of reinforced concrete slabs using neural dynamics model. Eng. Appl. Artif. Intell. 18(1), 65–72 (2005)CrossRefGoogle Scholar
  3. 3.
    Arena, P., Caccamo, S., Patanè, L., Strauss, R.: A computational model for motor learning in insects. In: IJCNN, pp. 1349–1356. Dallas, TX (2013)Google Scholar
  4. 4.
    Arena, P., Calí, M., Patanè, L., Portera, A.: A fly-inspired mushroom bodies model for sensory-motor control through sequence and subsequence learning. Int. J. Neural Syst. 24(5), 1–16 (2016)Google Scholar
  5. 5.
    Arena, P., Calí, M., Patanè, L., Portera, A., Strauss, R.: Modeling the insect mushroom bodies: application to sequence learning. Neural Netw. 67, 37–53 (2015)Google Scholar
  6. 6.
    Arena, P., Fortuna, L., Frasca, M., Ganci, G., Patanè, L.: A bio-inspired auditory perception model for amplitude-frequency clustering. Proc. SPIE 5839, 359–368 (2005)Google Scholar
  7. 7.
    Arena, P., Fortuna, L., Frasca, M., Patanè, L.: Sensory feedback in CNN-based central pattern generators. Int. J. Neural Syst. 13(6), 349–362 (2003)Google Scholar
  8. 8.
    Arena, P., Fortuna, L., Frasca, M., Patanè, L.: A CNN-based chip for robot locomotion control. IEEE Trans. Circ. Syst. I 52(9), 1862–1871 (2005)Google Scholar
  9. 9.
    Arena, P., Fortuna, L., Frasca, M., Patanè, L.: Learning anticipation via spiking networks: application to navigation control. IEEE Trans. Neural Netw. 20(2), 202–216 (2009)Google Scholar
  10. 10.
    Arena, P., Patanè, L., Termini, P.: Learning expectation in insects: a recurrent spiking neural model for spatio-temporal representation. Neural Netw. 32, 35–45 (2012)Google Scholar
  11. 11.
    Arena, P., Stornanti, V., Termini, P., Zaepf, B., Strauss, R.: Modeling the insect mushroom bodies: Application to a delayed match-to-sample task. Neural Netw. 41, 202–211 (2013)CrossRefGoogle Scholar
  12. 12.
    Aso, Y., Hattori, D., Yu, Y., Johnston, R.M., Iyer, N.A., Ngo, T.T., Dionne, H., Abbott, L., Axel, R., Tanimoto, H., Rubin, G.M.: The neuronal architecture of the mushroom body provides a logic for associative learning. eLife 3 (2014).
  13. 13.
    Baddeley, B., Graham, P., Husbands, P., Philippides, A.: A model of ant route navigation driven by scene familiarity. PLoS Comput. Biol. 8(8), e1002,336 (2012).
  14. 14.
    Berthouze, L., Tijsseling, A.: A neural model for context dependent sequence learning. Neural Process. Lett. 23(1), 27–45 (2006)CrossRefGoogle Scholar
  15. 15.
    Brea, J., Senn, W., Pfister, J.: Matching recall and storage in sequence learning with spiking neural networks. J. Neurosci. 33(23), 9565–9575 (2013)CrossRefGoogle Scholar
  16. 16.
    Buonomano, D.V., Mauk, M.D.: Neural network model of the cerebellum: temporal discrimination and the timing of motor responses. Neural Comput. 6(1), 38–55 (1994).
  17. 17.
    Cassenaer, S., Laurent, G.: Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts. Nature 448(7154), 709–713 (2007)CrossRefGoogle Scholar
  18. 18.
    Collet, T., Fry, S., Wehner, R.: Sequence learning by honeybees. J. Comp. Physiol. A. 172(6), 693–706 (1993)Google Scholar
  19. 19.
    Davis, R., Han, K.: Neuroanatomy: mushrooming mushroom bodies. Curr. Biol. 6, 146–148 (1996)CrossRefGoogle Scholar
  20. 20.
    Drew, P.J., Abbott, L.F.: Extending the effects of spike-timing-dependent plasticity to behavioral timescales. Proc. Nat. Acad. Sci. USA 103(23), 8876–8881 (2006)CrossRefGoogle Scholar
  21. 21.
    Friedrich, J., Urbanczik, R., Senn, W.: Code-specific learning rules improve action selection by populations of spiking neurons. Int. J. Neural Syst. 24(05), 1450,002 (2014).
  22. 22.
    Ghosh-Dastidar, S., Adeli, H.: Improved spiking neural networks for eeg classification and epilepsy and seizure detection. Int. J. Neural Syst. 14(03), 187–212 (2007)Google Scholar
  23. 23.
    Ghosh-Dastidar, S., Adeli, H.: Spiking neural networks. Int. J. Neural Syst. 19(4), 295–308 (2009)CrossRefGoogle Scholar
  24. 24.
    Giurfa, M.: Cognitive neuroethology: dissecting non-elemental learning in a honeybee brain. Curr. Opin. Neurobiol. 13(6), 726–735 (2003)CrossRefGoogle Scholar
  25. 25.
    Izhikevich, E.M.: Solving the distal reward problem through linkage of stdp and dopamine signaling. Cereb. Cortex 17, 2443–2452 (2007)CrossRefGoogle Scholar
  26. 26.
    Jaeger, H.: Short term memory in echo state networks. GMD-Report German National Research Institute for Computer Science 152 (2002)Google Scholar
  27. 27.
    Liu, L., Wolf, R., Ernst, R., Heisenberg, M.: Context generalization in Drosophila visual learning requires the mushroom bodies. Nature 400, 753–756 (1999)CrossRefGoogle Scholar
  28. 28.
    Maass, W., Natschlaeger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)CrossRefzbMATHGoogle Scholar
  29. 29.
    Martin, J.R., Ernst, R., Heisenberg, M.: Mushroom bodies suppress locomotor activity in Drosophila melanogaster. Learn. Memory 5, 179–191 (1998)Google Scholar
  30. 30.
    Mohemmed, A., Schliebs, S., Matsuda, S., Kasabov, N.: Span: Spike pattern association neuron for learning spatio-temporal spike patterns. Int. J. Neural Syst. 22(04), 1250,012 (2012).
  31. 31.
    Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)CrossRefGoogle Scholar
  32. 32.
    Mosqueiro, T.S., Huerta, R.: Computational models to understand decision making and pattern recognition in the insect brain. Curr. Opin. Insect Sci. 6, 80–85 (2014)CrossRefGoogle Scholar
  33. 33.
    Nowotny, T., Huerta, R., Abarbanel, H., Rabinovich, M.: Self-organization in the olfactory system: one shot odor recognition in insects. J. Comput. Neurosci. 93, 436–446 (2005)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Nowotny, T., Rabinovich, M., Huerta, R., Abarbanel, H.: Decoding temporal information through slow lateral excitation in the olfactory system of insects. J. Comput. Neurosci. 15, 271–281 (2003)CrossRefGoogle Scholar
  35. 35.
    Patanè, L., Hellbach, S., Krause, A.F., Arena, P., Duerr, V.: An insect-inspired bionic sensor for tactile localisation and material classification with state-dependent modulation. Frontiers Neurorobotics 6(8) (2012).
  36. 36.
    Perez-Orive, J., Mazor, O., Turner, G., Cassenaer, S., Wilson, R., Laurent, G.: Oscillations and sparsening of odor representations in the mushroom body. Science 297, 359–365 (2002)CrossRefGoogle Scholar
  37. 37.
    Russo, P., Webb, B., Reeve, R., Arena, P., Patanè, L.: Cricket-inspired neural network for feedforward compensation and multisensory integration. In: IEEE Conference on Decision and Control (2005)Google Scholar
  38. 38.
    Sachse, S., Galizia, C.: Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J. Neurophysiol. 87, 1106–1117 (2002)CrossRefGoogle Scholar
  39. 39.
    Scherer, S., Stocker, R., Gerber, B.: Olfactory learning in individually assayed Drosophila larvae. Learn. Memory 10, 217–225 (2003)CrossRefGoogle Scholar
  40. 40.
    Schmuker, M., Pfeil, T., Nawrot, M.P.: A neuromorphic network for generic multivariate data classification. Proc. Nat. Acad. Sci. USA 111(6), 2081–2086 (2014).
  41. 41.
    Smith, D., Wessnitzer, J., Webb, B.: A model of associative learning in the mushroom body. Biol. Cybern. 99, 89–103 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Stocker, R., Lienhard, C., Borst, A.: Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res. 9–34 (1990)Google Scholar
  43. 43.
    Strausfeld, N.J.: Organization of the honey bee mushroom body: Representation of the calyx within the vertical and gamma lobes. J. Comparative Neurology 450(1), 4–33 (2002). 10.1002/cne.10285.
  44. 44.
    Tang, S., Guo, A.: Choice behavior of Drosophila facing contradictory visual cues. Science 294, 1543–1547 (2001)CrossRefGoogle Scholar
  45. 45.
    Tanimoto, H., Heisenberg, M., Gerber, B.: Experimental psychology: event timing turns punishment to reward. Nature 430, 983 (2004)CrossRefGoogle Scholar
  46. 46.
    Turner, G., Bazhenov, M., Laurent, G.: Olfactory representations by Drosophila mushroom body neurons. J. Neurophysiology, 734–746 (2008)Google Scholar
  47. 47.
    Webb, B., Wessnitzer, J., Bush, S., Schul, J., Buchli, J., Ijspeert, A.: Resonant neurons and bushcricket behaviour. J. Comparative Physiol. A 193(2), 285–288 (2007).
  48. 48.
    Wehr, M., Laurent, G.: Odor encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384, 162–166 (1996)CrossRefGoogle Scholar
  49. 49.
    Wessnitzer, J., Young, J., Armstrong, J., Webb, B.: A model of non-elemental olfactory learning in Drosophila. J. Neurophysiol. 32, 197–212 (2012)Google Scholar
  50. 50.
    Zhang, S., Bartsch, K., Srinivasan, M.: Maze learning by honeybees. Neurobiol. Learn. Mem. 66(3), 267–282 (1996)CrossRefGoogle Scholar
  51. 51.
    Zhang, S., Si, A., Pahl, M.: Visually guided decision making in foraging honeybees. Frontiers Neurosci. 6(88), 1–17 (2012)Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Elettrica Elettronica e dei SistemiUniversity of CataniaCataniaItaly
  2. 2.Institut für Entwicklungsbiologie und NeurobiologieJohannes Gutenberg Universität MainzMainzGermany

Personalised recommendations