Controlling and Learning Motor Functions

  • Luca Patanè
  • Roland Strauss
  • Paolo ArenaEmail author
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Effective and adaptive motor functions are important for living beings and developing computational and learning mechanisms for roving robots is a crucial aspect in biorobotics. In this chapter we report a new architecture for motor learning to be applied in insect-like walking robots. The proposed model is based on the MB structure previously introduced able to memorize time evolutions of key parameters of the neural motor controller to improve existing motor primitives. The adopted control scheme enables the structure to efficiently cope with goal-oriented behavioural motor tasks. The problem of body-size evaluation is also considered and a model for the parallax-based estimation is provided. Finally, a six-legged structure, showing a steady-state exponentially stable locomotion pattern, was employed to modulate its motor commands implementing an obstacle climbing procedure. Simulation results on a Drosophila-inspired hexapod robot are reported.


Motor Skill Learning Hexapod Robot Body Size Model Extrinsic Neurons Central Pattern Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alba, L., Morillas, S., Listan, J., Jimenez, A., Arena, P., Patanè, L.: Embedding the anafocus eye-ris vision system in roving robots to enhance the action-oriented perception. In: Proceedings of Microtechnologies for the New Millennium (SPIE 09), pp. 7365–08. Dresden, Germany (2009)Google Scholar
  2. 2.
    Arena, E., Arena, P., Strauss, R., Patanè, L.: Motor-skill learning in an insect inspired neuro-computational control system. Front. Neurorobot. 11, 12 (2017).
  3. 3.
    Arena, P., Caccamo, S., Patanè, L., Strauss, R.: A computational model for motor learning in insects. In: International Joint Conference on Neural Networks (IJCNN), Dallas, TX, pp. 1349–1356, 4–9 August 2013Google Scholar
  4. 4.
    Arena, P., De Fiore, S., Patanè, L., Pollino, M., Ventura, C.: Insect inspired unsupervised learning for tactic and phobic behavior enhancement in a hybrid robot. In: WCCI 2010 IEEE World Congress on Computational Intelligence, pp. 2417–2424. Barcelona, Spain (2010)Google Scholar
  5. 5.
    Arena, P., Maceo, S., Patanè, L., Strauss, R.: A spiking network for spatial memory formation: towards a fly-inspired ellipsoid body model. In: IJCNN, Dallas, TX, pp. 1245–1250 (2013)Google Scholar
  6. 6.
    Arena, P., Mauro, G.D., Krause, T., Patanè, L., Strauss, R.: A spiking network for body size learning inspired by the fruit fly. In: Proceedings of International Joint Conference on Neural Networks, Dallas, TX, pp. 1251–1257 (2013)Google Scholar
  7. 7.
    Arena, P., Patanè, L., Strauss, R.: The insect mushroom bodies: a paradigm of neural reuse. In: ECAL, pp. 765–772. MIT Press, Taormina, Italy (2013)Google Scholar
  8. 8.
    Bläsing, B.: Crossing large gaps: a simulation study of stick insect behavior. Adapt. Behav. 14(3), 265–285 (2006)CrossRefGoogle Scholar
  9. 9.
    Bläsing, B., Cruse, H.: Mechanisms of stick insect locomotion in a gap crossing paradigm. J. Comp. Physiol. 190(3), 173–183 (2004)CrossRefGoogle Scholar
  10. 10.
    Brembs, B., Heisenberg, M.: The operant and the classical in conditioned orientation of Drosophila melanogaster at the flight simulator. Learn. Mem. 7(2), 104–115 (2000)CrossRefGoogle Scholar
  11. 11.
    Broussard, D., Karrardjian, C.: Learning in a simple motor system. Learn. Mem. 11, 127–136 (2004)CrossRefGoogle Scholar
  12. 12.
    Cruse, H., Kindermann, T., Schumm, M., Dean, J., Schmitz, J.: Walknet a biologically inspired network to control six-legged walking. Neural Netw. 11, 1435–1447 (1998)CrossRefGoogle Scholar
  13. 13.
    Dasgupta, S., Goldschmidt, D., Wörgötter, F., Manoonpong, P.: Distributed recurrent neural forward models with synaptic adaptation and cpg-based control for complex behaviors of walking robots. Front. Neurorobot. 9, 1–10 (2015).
  14. 14.
    Goldschmidt, D., Wörgötter, F., Manoonpong, P.: Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots. Front. Neurorobot. 8, 3 (2014).
  15. 15.
    Hoffmann, M., Marques, H., Hernandez, A., Sumioka, H., Lungarella, M., Pfeifer, R.: Body schema in robotics: a review. Auton. Ment. Dev 2(4), 304–324 (2010)CrossRefGoogle Scholar
  16. 16.
    Horridge, G.: Learning of leg position by headless insects. Nature 193, 697–8 (1962)CrossRefGoogle Scholar
  17. 17.
    Kienitz, B.: Motorisches lernen in Drosophila Melanogaster. Ph.D. thesis (2010). Shaker Verlag, AachenGoogle Scholar
  18. 18.
    Krause, A., Bläsing, B., Dürr, V., Schack, T.: Direct control of an active tactile sensor using echo state networks. In: Ritter, H., Sagerer, G., Dillmann, R., Buss, M. (eds.) Human Centered Robot Systems. Springer (2009)Google Scholar
  19. 19.
    Krause, T., Strauss, R.: Mapping the individual body-size representation underlying climbing control in the brain of Drosophila melanogaster. In: 33rd Gottingen Meeting of the German Neuroscience Society, pp. T25–11B (2011)Google Scholar
  20. 20.
    Lin, A., Bygrave, A., de Calignon, A., Lee, T., Miesenböck, G.: Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination. Nat. Neurosci. 17, 559–568 (2013)CrossRefGoogle Scholar
  21. 21.
    Moore, E., Campbell, D., Grimminger, F., Buehler, M.: Reliable stair climbing in the simple hexapod RHex. In: IEEE International Conference on Robotics and Automation, pp. 2222–2227 (2002)Google Scholar
  22. 22.
    Nabeshima, C., Lungarella, M., Kuniyoshi, Y.: Timing-based model of body schema adaptation and its role in perception and tool use: A robot case study. In: 4th IEEE International Conference on Development and Learning (ICDL-05), Osaka, Japan, pp. 7–12 (2005)Google Scholar
  23. 23.
    Pavone, M., Arena, P., Fortuna, L., Frasca, M., Patanè, L.: Climbing obstacle in bio-robots via CNN and adaptive attitude control. Int.J. Circuit Theory Appl. 34, 109–125 (2006)Google Scholar
  24. 24.
    Pick, S., Strauss, R.: Goal-driven behavioral adaptations in gap-climbing Drosophila. Curr. Biol. 15, 1473–8 (2005)CrossRefGoogle Scholar
  25. 25.
    Pitti, A., Mori, H., Kouzuma, S., Kuniyoshi, Y.: Contingency perception and agency measure in visuo-motor spiking neural networks. IEEE Trans. Auton. Ment. Dev. 1(1) (2009)Google Scholar
  26. 26.
    Sturm, J., Plagemann, C., Burgard, W.: Adaptive body scheme models for robust robotic manipulation. In: RSS—Robotics Science and Systems IV (2008)Google Scholar
  27. 27.
    Triphan, T., Poeck, B., Neuser, K., Strauss, R.: Visual targeting of motor actions in climbing Drosophila. Curr. Biol. 20(7), 663–668 (2010)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Elettrica Elettronica e dei SistemiUniversity of CataniaCataniaItaly
  2. 2.Institut für Entwicklungsbiologie und NeurobiologieJohannes Gutenberg Universität MainzMainzGermany

Personalised recommendations