Advertisement

Modelling Spatial Memory

  • Luca Patanè
  • Roland Strauss
  • Paolo ArenaEmail author
Chapter
  • 449 Downloads
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Among the different capabilities of animals, the formation of spatial memories is crucial for their life. Living beings able to move, constantly need to orient themselves in the environment to reach a target that might be not always visible. This chapter investigates the process of spatial memory formation as an essential ingredient for orientation in open and unstructured environments. Neural centres devoted to spatial memory and path integration were deeply investigated both in rats and different insect species like ants, bees and fruit flies. In this chapter a neural-inspired model for the formation of a spatial working memory is discussed considering some key elements of the insect neural centres involved, in particular the ellipsoid body of the central complex.

References

  1. 1.
    Aradi, I., Barna, G., Erdi, P.: Chaos and learning in the olfactory bulb. Int. J. Intell. Syst. 10(1), 89–117 (1995)CrossRefzbMATHGoogle Scholar
  2. 2.
    Arena, P., Maceo, S., Patanè, L., Strauss, R.: A spiking network for spatial memory formation: towards a fly-inspired ellipsoid body model. In: The 2013 International Joint Conference on Neural Networks, IJCNN 2013, Dallas, TX, USA, pp. 1–6, 4–9 Aug 2013.  https://doi.org/10.1109/IJCNN2013.6706882
  3. 3.
    Arena, P., Mauro, G.D., Krause, T., Patanè, L., Strauss, R.: A spiking network for body size learning inspired by the fruit fly. In: The 2013 International Joint Conference on Neural Networks, IJCNN 2013, Dallas, TX, USA, pp. 1–7, 4–9 Aug 2013.  https://doi.org/10.1109/IJCNN.2013.6706883
  4. 4.
    Arena, P., Patanè, L., Strauss, R.: Motor learning and body size within an insect brain computational model. In: Proceedings of the Biomimetic and Biohybrid Systems—Third International Conference, Living Machines 2014, Milan, Italy, July 30–Aug 1 2014, pp. 367–369 (2014)Google Scholar
  5. 5.
    Bisch-Knaden, S., Wehner, R.: Local vectors in desert ants: context-dependent landmark learning during outbound and homebound runs. J. Comp. Physiol. 189, 181–187 (2003)Google Scholar
  6. 6.
    Borenstein, J., Everett, H., Feng, L.: Where am I? systems and methods for mobile robot positioning. Technical Report (1996). http://www-personal.umich.edu/johannb/Papers/pos96rep.pdf
  7. 7.
    Collett, M., Collett, T., Srinivasan, M.: Insect navigation: measuring travel distance across ground and through air. Curr. Biol. 16, R887–R890 (2006)CrossRefGoogle Scholar
  8. 8.
    Cruse, H., Wehner, R.: No need for a cognitive map: decentralized memory for insect navigation. PLoS Comput. Biol. 7(3), 1–10 (2011)CrossRefGoogle Scholar
  9. 9.
    Haferlach, T., Wessnitzer, J., Mangan, M., Webb, B.: Evolving a neural model of insect path integration. Adapt. Behav. 15, 273–287 (2007)CrossRefGoogle Scholar
  10. 10.
    Hartmann, G., Wehner, R.: The ant’s path integration system: a neural architecture. Biol. Cybern. 73, 483–497 (1995)zbMATHGoogle Scholar
  11. 11.
    Kahsai, L., Carlsson, M., Winther, A., Nassel, D.: Distribution of metabotropic receptors of serotonin, dopamine, GABA, glutamate, and short neuropeptide F in the central complex of Drosophila. Neuroscience 208, 11–26 (2012)CrossRefGoogle Scholar
  12. 12.
    Kuntz, S., Poeck, B., Strauss, R.: Visual working memory requires permissive and instructive NO/cGMP signaling at presynapses in the Drosophila central brain. Curr. Biol. 27(5), 613–623 (2017)CrossRefGoogle Scholar
  13. 13.
    Neuser, K., Triphan, T., Mronz, M., Poeck, B., Strauss, R.: Analysis of a spatial orientation memory in Drosophila. Nature 453, 1244–1247 (2008)CrossRefGoogle Scholar
  14. 14.
    Ofstad, T.A., Zuker, C.S., Reiser, M.B.: Visual place learning in Drosophila melanogaster. Nature 474, 204–209 (2011)CrossRefGoogle Scholar
  15. 15.
    Redish, A., Elga, A., Touretzky, D.: A coupled attractor model of the rodent head direction system. Netw. Comput. Neural Syst. 7(4), 671–685 (1996)CrossRefzbMATHGoogle Scholar
  16. 16.
    Seelig, J.D., Jayaraman, V.: Neural dynamics for landmark orientation and angular path integration. Nature 521(7551), 186–191 (2015).  https://doi.org/10.1038/nature14446
  17. 17.
    Song, P., Wang, X.: Angular path integration by moving hill of activity: a spiking neuron model without recurrent excitation of the head-direction system. J. Neurosci. 25(4), 1002–1014 (2005)CrossRefGoogle Scholar
  18. 18.
    Wehner, R.: Desert ant navigation: how miniature brains solve complex tasks. J. Comp. Physiol. A. 189, 579–588 (2003)CrossRefGoogle Scholar
  19. 19.
    Wittmann, T., Schwegler, H.: Path integration—a network model. Biol. Cybern. 73, 569–575 (1995)CrossRefzbMATHGoogle Scholar
  20. 20.
    Wu, C., Xia, S., Fu, T., Wang, H., Chen, Y., Leong, D., Chiang, A., Tully, T.: Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nat. Neurosci. 10, 1578–1586 (2007)CrossRefGoogle Scholar
  21. 21.
    Young, J., Armstrong, J.: Structure of the adult central complex in Drosophila: organization of distinct neuronal subsets. J. Comp. Neurol. 518, 1500–1524 (2010)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Elettrica Elettronica e dei SistemiUniversity of CataniaCataniaItaly
  2. 2.Institut für Entwicklungsbiologie und NeurobiologieJohannes Gutenberg Universität MainzMainzGermany

Personalised recommendations