Advertisement

Biological Investigation of Neural Circuits in the Insect Brain

  • Luca Patanè
  • Roland Strauss
  • Paolo ArenaEmail author
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Watching insects thoughtfully one cannot but adore their behavioural capabilities. They have developed amazing reproductive, foraging and orientation strategies and at the same time they followed the evolutionary path of miniaturization and sparseness. Both features together turn them into a role model for autonomous robots. Despite their tiny brains, fruit flies (Drosophila) can orient, walk on uneven terrain, in any orientation to gravity, can fly in adverse winds, find partners, places for egg laying, food and shelter. Drosophila melanogaster is the model animal for geneticists and cutting-edge tools are being continuously developed to study the underpinnings of their behavioural capabilities. This provided novel insight into the wiring and the working of central brain structures like the mushroom bodies and the central complex. Plasticity of the nervous system underlies adaptive behaviour. Drosophila flies show various memories from a 4-s working memory for orientation to a life-long body-size memory. Here we will discuss some of the functions and brain structures underlying fitness and role-model function of insects for autonomously roving robots.

Keywords

Mushroom Bodies Kenyon Cells Protocerebral Bridge Mushroom Body Output Neurons (MBON) Ellipsoid Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aso, Y., Sitaraman, D., Ichinose, T., Kaun, K.R., Vogt, K., Belliart-Guérin, G., Plaçais, P.Y., Robie, A.A., Yamagata, N., Schnaitmann, C., Rowell, W.J., Johnston, R.M., Ngo, T.T., Chen, N., Korff, W., Nitabach, M.N., Heberlein, U., Preat, T., Branson, K.M., Tanimoto, H., Rubin, G.M.: Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. eLife 3, e04580 (2014)Google Scholar
  2. 2.
    Batsching, S., Wolf, R., Heisenberg, M.: Inescapable stress changes walking behavior in flies-learned helplessness revisited. PLoS ONE 11(11), e0167066 (2016)CrossRefGoogle Scholar
  3. 3.
    Boyan, G., Liu, Y., Khalsa, S.K., Hartenstein, V.: A conserved plan for wiring up the fan-shaped body in the grasshopper and Drosophila. Dev. Genes Evolut. 227(4), 253–269 (2017)CrossRefGoogle Scholar
  4. 4.
    Brand, A.H., Perrimon, N.: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2), 401–415 (1993)Google Scholar
  5. 5.
    Burke, C.J., Huetteroth, W., Owald, D., Perisse, E., Krashes, M.J., Das, G., Gohl, D., Silies, M., Certel, S., Waddell, S.: Layered reward signaling through octopamine and dopamine in Drosophila. Nature 492(7429), 433–437 (2012)CrossRefGoogle Scholar
  6. 6.
    Caron, S.J.C., Ruta, V., Abbott, L.F., Axel, R.: Random convergence of olfactory inputs in the Drosophila mushroom body. Nature 497(7447), 113–117 (2013)CrossRefGoogle Scholar
  7. 7.
    Cervantes-Sandoval, I., Phan, A., Chakraborty, M., Davis, R.L.: Reciprocal synapses between mushroom body and dopamine neurons form a positive feedback loop required for learning. eLife 10, e23789 (2017)Google Scholar
  8. 8.
    Cervantes-Sandoval, I., Martin-Pena, A., Bery, J., Davis, R.: System-like consolidation of olfactory memories in Drosophila. J. Neurosci. 33(23), 9846–9854 (2013)CrossRefGoogle Scholar
  9. 9.
    Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., Prasher, D.C.: Green fluorescent protein as a marker for gene expression. Science 263(5148), 802–805 (1994)CrossRefGoogle Scholar
  10. 10.
    Chouhan, N.S., Wolf, R., Helfrich-Förster, C., Heisenberg, M.: Flies remember the time of day. Curr. Biol. 25(12), 1619–1624 (2015)CrossRefGoogle Scholar
  11. 11.
    Chouhan, N.S., Wolf, R., Heisenberg, M.: Starvation promotes odor/feeding-time associations in flies. Learn. Mem. 24(7), 318–321 (2017)CrossRefGoogle Scholar
  12. 12.
    Crittenden, J., Skoulakis, E., Han, K., Kalderon, D., Davis, R.: Tripartite mushroom body architecture revealed by antigenic markers. Learn. Mem. 5(1–2), 38–51 (1998)Google Scholar
  13. 13.
    Dill, M., Heisenberg, M.: Visual pattern memory without shape recognition. Philos. Trans. R. Soc. Lond. B 349, 143–152 (1995)CrossRefGoogle Scholar
  14. 14.
    Duffy, J.B.: GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34(1–2), 1–15 (2002)CrossRefGoogle Scholar
  15. 15.
    Farris, S.M., Robinson, G.E., Fahrbach, S.E.: Experience-and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. J. Neurosci. 21(16), 6395–6404 (2001)Google Scholar
  16. 16.
    Felsenberg, J., Barnstedt, O., Cognigni, P., Lin, S., Waddell, S.: Re-evaluation of learned information in Drosophila. Nature 544, 240–244 (2017)CrossRefGoogle Scholar
  17. 17.
    Green, J., Adachi, A., Shah, K.K., Hirokawa, J.D., Magani, P.S., Maimon, G.: A neural circuit architecture for angular integration in Drosophila. Nature 546, 101–106 (2017)CrossRefGoogle Scholar
  18. 18.
    Gronenberg, W., López-Riquelme, G.O.: Multisensory convergence in the mushroom bodies of ants and bees. Acta Biol. Hung. 55(1), 31–37 (2004)CrossRefGoogle Scholar
  19. 19.
    Hamada, F.N., Rosenzweig, M., Kang, K., Pulver, S., Ghezzi, A., Jegla, T.J., Garrity, P.A.: An internal thermal sensor controlling temperature preference in Drosophila. Nature 454, 217–220 (2008)CrossRefGoogle Scholar
  20. 20.
    Hammer, M., Menzel, R.: Multiple sites of associative odour learning as revealed by local brain microinjections of octopamine in honeybees. Learn. Mem. 5, 146–156 (1998)Google Scholar
  21. 21.
    Hanesch, U., Fischbach, K.-F., Heisenberg, M.: Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res. 257, 343–366 (1989)CrossRefGoogle Scholar
  22. 22.
    Heimbeck, G., Bugnon, V., Gendre, N., Keller, A., Stocker, R.: A central neural circuit for experience-independent olfactory and courtship behavior in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 98(26), 15336–15341 (2001)CrossRefGoogle Scholar
  23. 23.
    Heinze, S.: Neural coding: bumps on the move. Curr. Biol. 27, R410–R412 (2017)CrossRefGoogle Scholar
  24. 24.
    Heinze, S., Reppert, S.M.: Sun compass integration of skylight cues in migratory monarch butterflies. Neuron 69, 345–358 (2011)CrossRefGoogle Scholar
  25. 25.
    Heinze, S., Gotthardt, S., Homberg, U.: Transformation of polarized light information in the central complex of the locust. J. Neurosci. 29, 11783–11793 (2009)CrossRefGoogle Scholar
  26. 26.
    Homberg, U.: Sky compass orientation in desert locusts-evidence from field and laboratory studies. Front. Behav. Neurosci. 9, 346 (2015)CrossRefGoogle Scholar
  27. 27.
    Huetteroth, W., Perisse, E., Lin, S., Klappenbach, M., Burke, C., Waddell, S.: Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in Drosophila. Curr. Biol. 25(6), 751–758 (2015)CrossRefGoogle Scholar
  28. 28.
    Inagaki, H.K., Jung, Y., Hoopfer, E.D., Wong, A.M., Mishra, N., Lin, J.Y., Tsien, R.Y., Anderson, D.J.: Optogenetic control of freely behaving adult Drosophila using a red-shifted channelrhodopsin. Nat. Methods 11(3), 325–332 (2014)CrossRefGoogle Scholar
  29. 29.
    Isabel, G., Pascual, A., Preat, T.: Exclusive consolidated memory phases in Drosophila. Science 304, 1024–1027 (2004)CrossRefGoogle Scholar
  30. 30.
    Ito, K., Shinomiya, K., Ito, M., Armstrong, D., Boyan, G., Hartenstein, V., Harzsch, S., Heisenberg, M., Homberg, U., Jenett, A., Keshishian, H., Restifo, L.L., Rössler, W., Simpson, J.H., Strausfeld, N.J., Strauss, R., Vosshall, L.B.: A systematic nomenclature of the insect brain. Neuron 81, 755–765 (2014)CrossRefGoogle Scholar
  31. 31.
    Kienitz, B.: Motorisches Lernen in Drosophila Melanogaster. Shaker Verlag, Aachen (2010)Google Scholar
  32. 32.
    Kim, S.S., Rouault, H., Druckmann, S., Jayaraman, V.: Ring attractor dynamics in the Drosophila central brain. Science 356(6340), 849–853 (2017)CrossRefGoogle Scholar
  33. 33.
    Kitamoto, T.: Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92 (2001)CrossRefGoogle Scholar
  34. 34.
    Krause, T., Strauss, R.: Body reach learning from parallax motion in Drosophila requires PKA/CREB. J. Neurogenet. 26 Suppl. 1, 48 (2012)Google Scholar
  35. 35.
    Kuntz, S., Poeck, B., Sokolowski, M.B., Strauss, R.: The visual orientation memory of Drosophila requires Foraging (PKG) upstream of Ignorant (RSK2) in ring neurons of the central complex. Learn. Mem. 19, 337–340 (2012)CrossRefGoogle Scholar
  36. 36.
    Kuntz, S., Poeck, B., Strauss, R.: Visual working memory requires permissive and instructive NO/cGMP signaling at presynapses in the Drosophila central brain. Curr. Biol. 27(5), 613–623 (2017)CrossRefGoogle Scholar
  37. 37.
    Lee, T., Lee, A., Lou, L.: Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons form a neuroblast. Development 126(18), 4065–4076 (1999)Google Scholar
  38. 38.
    Lei, Z., Chen, K., Li, H., Liu, H., Guo, A.: The GABA system regulates the sparse coding of odors in the mushroom bodies of Drosophila. Biochem. Biophys. Res. Commun. 436(1), 35–40 (2013)CrossRefGoogle Scholar
  39. 39.
    Lin, C.-Y., Chuang, C.-C., Hua, T.-E., Chen, C.-C., Dickson, B.J., Greenspan, R.J., Chiang, A.-S.: A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain. Cell Rep. 3, 1739–1753 (2013)CrossRefGoogle Scholar
  40. 40.
    Liu, L., Wolf, R., Ernst, R., Heisenberg, M.: Context generalization in Drosophila visual learning requires the mushroom bodies. Nature 400(6746), 753–756 (1999)CrossRefGoogle Scholar
  41. 41.
    Liu, G., Seiler, H., Wen, A., Zars, T., Ito, K., Wolf, R., Heisenberg, M., Liu, L.: Distinct memory traces for two visual features in the Drosophila brain. Nature 439(7076), 551–556 (2006)CrossRefGoogle Scholar
  42. 42.
    Martin, J., Ernst, R., Heisenberg, M.: Mushroom bodies suppress locomotor activity in Drosophila melanogaster. Learn. Mem. 5(1), 179–191 (1998)Google Scholar
  43. 43.
    Martin-Pena, A., Acebes, A., Rodriguez, J.-R., Chevalier, V., Triphan, T., Strauss, R., Ferrus, A.: Cell types and coincident synapses in the ellipsoid body of Drosophila. Eur. J. Neurosci. 39(10), 1586–1601 (2014)CrossRefGoogle Scholar
  44. 44.
    Masse, N., Turner, G., Jefferis, G.: Olfactory information processing in Drosophila. Curr. Biol. 19(16), R700–R713 (2009)CrossRefGoogle Scholar
  45. 45.
    McBride, S., Giuliani, G., Choi, C., Krause, P., Correale, D., Watson, K., Baker, G., Siwicki, K.: Mushroom body ablation impairs short-term memory and long-term memory of courtship conditioning in Drosophila melanogaster. Neuron 24(4), 967–977 (1999)CrossRefGoogle Scholar
  46. 46.
    McGuire, S.E., Le, P.T., Osborn, A.J., Matsumoto, K., Davis, R.L.: Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302(5651), 1765–1768 (2003)CrossRefGoogle Scholar
  47. 47.
    Miyamoto, T., Amrein, H.: Suppression of male courtship by a Drosophila pheromone receptor. Nat. Neurosci. 11(8), 874–876 (2008)CrossRefGoogle Scholar
  48. 48.
    Mizunami, M., Weibrecht, J., Strausfeld, N.: A new role for the insect mushroom bodies: place memory and motor control. In: Beer, R. (ed.) Biological Neural Networks in Invertebrate Neuroethology and Robotics, pp. 199–225. Academic Press, Cambridge (1993)Google Scholar
  49. 49.
    Mizunami, M., Weibrecht, J., Strausfeld, N.: Mushroom bodies of the cockroach: their participation in place memory. J. Comp. Neurol. 402, 520–537 (1998)CrossRefGoogle Scholar
  50. 50.
    Morris, R.: Spatial localization does not require the presence of local cues. Learn. Motiv. 12, 239–260 (1981)CrossRefGoogle Scholar
  51. 51.
    Mronz, M., Strauss, R.: Proper retreat from attractive but inaccessible landmarks requires the mushroom bodies. In: 9th European Symposium on Drosophila Neurobiology, Neurofly Dijon (Abstract) (2002)Google Scholar
  52. 52.
    Neuser, K., Triphan, T., Mronz, M., Poeck, B., Strauss, R.: Analysis of a spatial orientation memory in Drosophila. Nature 453(7199), 1244–1247 (2008)CrossRefGoogle Scholar
  53. 53.
    Ofstad, T.A., Zuker, C.S., Reiser, M.B.: Visual place learning in Drosophila melanogaster. Nature 474(7350), 204–207 (2011)CrossRefGoogle Scholar
  54. 54.
    Omoto, J.J., Keleş, M.F., Nguyen, B.-C.M., Bolanos, C., Lovick, J.K., Frye, M.A., Hartenstein, V.: Visual input to the Drosophila central complex by developmentally and functionally distinct neuronal populations. Curr. Biol. 27(8), 1098–1110 (2017)CrossRefGoogle Scholar
  55. 55.
    Ostrowski, D., Kahsai, L., Kramer, E.F., Knutson, P., Zars, T.: Place memory retention in Drosophila. Neurobiol. Learn. Mem. 123, 217–224 (2015)CrossRefGoogle Scholar
  56. 56.
    Pan, Y., Zhou, Y., Guo, C., Gong, H., Gong, Z., Liu, L.: Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. Learn. Mem. 16, 289–295 (2009)CrossRefGoogle Scholar
  57. 57.
    Perisse, E., Yin, Y., Lin, A., Lin, S., Hütteroth, W., Waddell, S.: Different Kenyon cell populations drive learned approach and avoidance in Drosophila. Neuron 79(5), 945–956 (2013)CrossRefGoogle Scholar
  58. 58.
    Perisse, E., Burke, C., Huetteroth, W., Waddell, S.: Shocking revelations and saccharin sweetness in the study of Drosophila olfactory memory. Curr. Biol. 23(17), R752–R763 (2013)CrossRefGoogle Scholar
  59. 59.
    Pfeiffer, B.D., Jenett, A., Hammonds, A.S., Ngo, T.-T.B., Misra, S., Murphy, C., Scully, A., Carlson, J.W., Wan, K.H., Laverty, T.R., Mungall, C., Svirskas, R., Kadonaga, J.T., Doe, C.Q., Eisen, M.B., Celniker, S.E., Rubin, G.M.: Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl. Acad. Sci. USA 105, 9715–9720 (2008)CrossRefGoogle Scholar
  60. 60.
    Pick, S., Strauss, R.: Goal-driven behavioral adaptations in gap-climbing Drosophila. Curr. Biol. 15, 1473–1478 (2005)CrossRefGoogle Scholar
  61. 61.
    Poeck, B., Triphan, T., Neuser, K., Strauss, R.: Locomotor control by the central complex in Drosophila-an analysis of the tay bridge mutant. Dev. Neurobiol. 68, 1046–1058 (2008)CrossRefGoogle Scholar
  62. 62.
    Putz, G., Heisenberg, M.: Memories in Drosophila heat-box learning. Learn. Mem. 9(5), 349–359 (2002)CrossRefGoogle Scholar
  63. 63.
    Putz, G., Bertolucci, F., Raabe, T., Zars, T., Heisenberg, M.: The S6KII (rsk) gene of Drosophila melanogaster differentially affects an operant and a classical learning task. J. Neurosci. 24(44), 9745–9751 (2004)CrossRefGoogle Scholar
  64. 64.
    Ries, A.-S., Hermanns, T., Poeck, B., Strauss, R.: Serotonin modulates a depression-like state in Drosophila responsive to lithium treatment. Nat. Commun. 8, 15738 (2017)CrossRefGoogle Scholar
  65. 65.
    Sakai, T., Kitamoto, T.: Differential roles of two major brain structures, mushroom bodies and central complex, for Drosophila male courtship behavior. J. Neurobiol. 66(8), 821–834 (2006)CrossRefGoogle Scholar
  66. 66.
    Schröter, U., Menzel, R.: A new ascending sensory tract to the calyces of the honeybee mushroom body, the subesophageal-calycal tract. J. Comp. Neurol. 465(2), 168–178 (2003)CrossRefGoogle Scholar
  67. 67.
    Schwärzel, M., Monastirioti, M., Scholz, H., Friggi-Grelin, F., Birman, S., Heisenberg, M.: Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J. Neurosci. 23, 10495–10502 (2003)Google Scholar
  68. 68.
    Seelig, J.D., Jayaraman, V.: Feature detection and orientation tuning in the Drosophila central complex. Nature 503, 262–266 (2013)CrossRefGoogle Scholar
  69. 69.
    Seelig, J.D., Jayaraman, V.: Neural dynamics for landmark orientation and angular path integration. Nature 521, 186–191 (2015)CrossRefGoogle Scholar
  70. 70.
    Serway, C., Kaufman, R., Strauss, R., de Belle, J.: Mushroom bodies enhance initial motor activity in Drosophila. J. Neurogenet. 23(1–2), 173–184 (2009)CrossRefGoogle Scholar
  71. 71.
    Siegel, R.W., Hall, J.C.: Conditioned responses in courtship behavior of normal and mutant Drosophila. Proc. Natl. Acad. Sci. USA 76, 3430–3434 (1979)CrossRefGoogle Scholar
  72. 72.
    Solanki, N., Wolf, R., Heisenberg, M.: Central complex and mushroom bodies mediate novelty choice behavior in Drosophila. J. Neurogen. 29(1), 30–37 (2015)CrossRefGoogle Scholar
  73. 73.
    Strauss, R., Heisenberg, M.: Coordination of legs during straight walking and turning in Drosophila melanogaster. J. Comp. Physiol. A 167, 403–412 (1990)CrossRefGoogle Scholar
  74. 74.
    Strauss, R., Hanesch, U., Kinkelin, M., Wolf, R., Heisenberg, M.: No bridge of Drosophila melanogaster: portrait of a structural mutant of the central complex. J. Neurogen. 8, 125–155 (1992)CrossRefGoogle Scholar
  75. 75.
    Strauss, R., Krause, T., Berg, C., Zäpf, B.: Higher brain centers for intelligent motor control in insects. In: Jeschke, S., Liu, H., Schilberg, D. (eds.) ICIRA 2011, Part II, LNAI 7102, pp. 56–64. Springer, Berlin (2011)Google Scholar
  76. 76.
    Strutz, A., Soelter, J., Baschwitz, A., Farhan, A., Grabe, V., Rybak, J., Knade, M., Schmucker, M., Hansson, B., Sachse, S.: Decoding odor quality and intensity in the Drosophila brain. eLife 3, e04147 (2014)Google Scholar
  77. 77.
    Sweeney, S.T., Broadie, K., Keane, J., Niemann, H., O’Kane, C.J.: Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341–351 (1995)CrossRefGoogle Scholar
  78. 78.
    Tanaka, N.K., Tanimoto, H., Ito, K.: Neuronal assemblies of the Drosophila mushroom body. J. Comput. Neurosci. 508, 711–755 (2008)CrossRefGoogle Scholar
  79. 79.
    Tang, S., Guo, A.: Choice behavior of Drosophila facing contradictory visual cues. Science 294(5546), 1543–1547 (2001)CrossRefGoogle Scholar
  80. 80.
    Trannoy, S., Redt-Clouet, C., Dura, J., Preat, T.: Parallel processing of appetitive short- and long-term memories in Drosophila. Curr. Biol. 21(19), 1647–1653 (2011)CrossRefGoogle Scholar
  81. 81.
    Triphan, T., Poeck, B., Neuser, K., Strauss, R.: Visual targeting of motor actions in climbing Drosophila. Curr. Biol. 20, 663–668 (2010)CrossRefGoogle Scholar
  82. 82.
    Triphan, T., Nern, A., Roberts, S.F., Korff, W., Naiman, D.Q., Strauss, R.: A screen for constituents of motor control and decision making in Drosophila reveals visual distance-estimation neurons. Sci. Rep. 6, 27000 (2016)CrossRefGoogle Scholar
  83. 83.
    Tully, T., Quinn, W.G.: Classical conditioning and retention in normal and mutant Drosophila melanogaster. J. Comp. Physiol. A 157(2), 263–277 (1985)CrossRefGoogle Scholar
  84. 84.
    Tully, T., Preat, T., Bonyton, S.C., Del Vecchio, M.: Genetic dissection of consolidated memory in Drosophila. Cell 79, 35–47 (1994)CrossRefGoogle Scholar
  85. 85.
    Turner-Evans, D., Wegener, S., Rouault, H., Franconville, R., Wolff, T., Seelig, J.D., Druckmann, S., Jayaraman, V.: Angular velocity integration in a fly heading circuit. eLife 6, e23496 (2017)Google Scholar
  86. 86.
    van Swinderen, B.: Attention-like processes in Drosophila require short-term memory genes. Science 315, 1590–1593 (2007)CrossRefGoogle Scholar
  87. 87.
    van Swinderen, B., Greenspan, R.J.: Salience modulates 20–30 Hz brain activity in Drosophila. Nat. Neurosci. 6, 579–586 (2003)CrossRefGoogle Scholar
  88. 88.
    van Swinderen, B., McCartney, A., Kauffman, S., Flores, K., Agrawal, K., Wagner, J., Paulk, A.: Shared visual attention and memory systems in the Drosophila brain. PLoS ONE 4, e5989 (2009)CrossRefGoogle Scholar
  89. 89.
    Vogt, K., Schnaitmann, C., Dylla, K.V., Knapek, S., Aso, Y., Rubin, G.M., Tanimoto, H.: Shared mushroom body circuits underlie visual and olfactory memories in Drosophila. eLife 3, e02395 (2014)Google Scholar
  90. 90.
    Vosshall, L., Stocker, R.: Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci. 30, 505–533 (2007)CrossRefGoogle Scholar
  91. 91.
    Vosshall, L., Wong, A., Axel, R.: An olfactory sensory map in the fly brain. Cell 102(2), 147–159 (2000)CrossRefGoogle Scholar
  92. 92.
    Wolff, T., Iyer, N.A., Rubin, G.M.: Neuroarchitecture and neuroanatomy of the Drosophila central complex: a GAL4-based dissection of protocerebral bridge neurons and circuits. J. Comp. Neurol. 523, 997–1037 (2015)CrossRefGoogle Scholar
  93. 93.
    Wu, J.-K., Tai, C.-Y., Feng, K.-L., Chen, S.-L., Chen, C.-C., Chiang, A.-S.: Long-term memory requires sequential protein synthesis in three subsets of mushroom body output neurons in Drosophila. Sci. Rep. 7, 7112 (2017)CrossRefGoogle Scholar
  94. 94.
    Wustmann, G., Rein, K., Wolf, R., Heisenberg, M.: A new paradigm for operant conditioning of Drosophila melanogaster. J. Comp. Physiol. A 179(3), 429–436 (1996)CrossRefGoogle Scholar
  95. 95.
    Yang, Z., Bertolucci, F., Wolf, R., Heisenberg, M.: Flies cope with uncontrollable stress by learned helplessness. Curr. Biol. 23(9), 799–803 (2013)CrossRefGoogle Scholar
  96. 96.
    Yi, W., Zhang, Y., Tian, Y., Guo, J., Li, Y., Guo, A.: A subset of cholinergic mushroom body neurons requires go signaling to regulate sleep in Drosophila. Sleep 36(12), 1809–1821 (2013)CrossRefGoogle Scholar
  97. 97.
    Young, J.M., Armstrong, J.D.: Structure of the adult central complex in Drosophila: Organization of distinct neuronal subsets. J. Compar. Neurol. 518, 1500–1524 (2010)CrossRefGoogle Scholar
  98. 98.
    Zhang, Z., Li, X., Guo, J., Li, Y., Guo, A.: Two clusters of GABAergic ellipsoid body neurons modulate olfactory labile memory in Drosophila. J. Neurosci. 33(12), 5175–5181 (2013)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Elettrica Elettronica e dei SistemiUniversity of CataniaCataniaItaly
  2. 2.Institut für Entwicklungsbiologie und NeurobiologieJohannes Gutenberg Universität MainzMainzGermany

Personalised recommendations