Skip to main content

Abstract

Mitochondria are the major sites of oxygen utilisation for energy production in cells. Indeed, all the reactions of the Krebs’ Cycle take place in mitochondria and they produce NADH and succinate, which are then oxidised in the respiratory chain. Experiments dating back to the early part of the twentieth century seemed to indicate that at a high rate of oxygen consumption (referred to gram of body weight) was normally associated with a low maximum lifespan. Thus, it was thought that it was the rate of oxygen utilisation that was related to “the rate of living”. However, more recent data pointed out that birds are unique because they combine high rates of oxygen consumption with a high maximum lifespan. It would later be pointed out that the maximal lifespan is more correlated with the rate of free radical production by mitochondria rather than the rate of oxygen utilisation. These experiments were performed under the general scheme of the free radical theory of ageing. Still, more than 300 theories have been postulated to explain ageing and this can indicate that none of them is completely satisfactory to explain a complex phenomenon such as ageing. We postulate in this chapter that the free radical theory of ageing could be revisited and that it is the age-associated derangement of the free radical signalling network that is central to understand ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali SS, Xiong C et al (2006) Gender differences in free radical homeostasis during aging: shorter-lived female C57BL6 mice have increased oxidative stress. Aging Cell 5(6):565–574

    Article  CAS  PubMed  Google Scholar 

  • Ames BN, Shigenaga MK et al (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A 90:7915–7922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ames BN, Shigenaga MK et al (1995) Mitochondrial decay in aging. Biochim Biophys Acta 1271(1):165–170

    Article  PubMed  Google Scholar 

  • Anson RM, Hudson E et al (2000) Mitochondrial endogenous oxidative damage has been overestimated. FASEB J 14(2):355–360

    Article  CAS  PubMed  Google Scholar 

  • Asunción JG, Millan A et al (1996) Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. FASEB J 10:333

    Article  PubMed  Google Scholar 

  • de la Asuncion JG, del Olmo ML et al (1998) AZT treatment induces molecular and ultrastructural oxidative damage to muscle mitochondria. Prevention by antioxidant vitamins. J Clin Invest 102(1):4–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Atamna H, Frey WH 2nd (2004) A role for heme in Alzheimer’s disease: heme binds amyloid beta and has altered metabolism. Proc Natl Acad Sci U S A 101(30):11153–11158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barja G (1998) Mitochondrial free radical production and aging in mammals and birds. Ann N Y Acad Sci 854:224–238

    Article  CAS  PubMed  Google Scholar 

  • Barja de Quiroga C (1999) Mitochondrial oxygen radical generation and leak: sites of produccion in states 4 an 3, organ specificity and relation to aging and longevity. J Bioenerg Biomembr 31(4):347–366

    Article  Google Scholar 

  • Barja G, Herrero A (2000) Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 14(2):312–318

    Article  CAS  PubMed  Google Scholar 

  • Barja G, Cadenas S et al (1994) Low mitochondrial free radical production per unit O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds. Free Radic Res 21(5):317–327

    Article  CAS  PubMed  Google Scholar 

  • Borras C, Sastre J et al (2003) Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free Radic Biol Med 34(5):546–552

    Article  CAS  PubMed  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134(3):707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calleja M, Pena P et al (1993) Mitochondrial DNA remains intact during Drosophila aging, but the levels of mitochondrial transcripts are significantly reduced. J Biol Chem 268(25):18891–18897

    CAS  PubMed  Google Scholar 

  • Caro P, Gomez J et al (2010) Mitochondrial DNA sequences are present inside nuclear DNA in rat tissues and increase with age. Mitochondrion 10(5):479–486

    Article  CAS  PubMed  Google Scholar 

  • Corral-Debrinski M, Shoffner JM et al (1992) Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat Res 275(3-6):169–180

    Article  CAS  PubMed  Google Scholar 

  • Cortopassi GA, Shibata D et al (1992) A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci U S A 89(16):7370–7374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croteau DL, Stierum RH et al (1999) Mitochondrial DNA repair pathways. Mutat Res 434(3):137–148

    Article  CAS  PubMed  Google Scholar 

  • Davies KJ, Ermak G et al (2007) Renaming the DSCR1/Adapt78 gene family as RCAN: regulators of calcineurin. FASEB J 21(12):3023–3028

    Article  CAS  PubMed  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    Article  CAS  PubMed  Google Scholar 

  • Gadaleta MN, Petruzzella V et al (1990) Reduced transcription of mitochondrial DNA in the senescent rat. Tissue dependence and effect of L-carnitine. Eur J Biochem 187(3):501–506

    Article  CAS  PubMed  Google Scholar 

  • Gadaleta MN, Rainaldi G et al (1992) Mitochondrial DNA copy number and mitochondrial DNA deletion in adult and senescent rats. Mutat Res 275(3-6):181–193

    Article  CAS  PubMed  Google Scholar 

  • García de la Asunción J, Millan A et al (1996) Mitochondiral glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. FASEB J 10:333–338

    Article  Google Scholar 

  • Gershman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO (1954) Oxygen poisoning and X irradiation: a mechanism in common. Science 119:623–626

    Article  Google Scholar 

  • Giulivi C, Boveris A et al (1995) Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxydesoxyguanosine in mitochondrial DNA. Arch Biochem Biophys 316(2):909–916

    Article  CAS  PubMed  Google Scholar 

  • Hagen TM, Yowe DL, Bartholomew JC, Wehr CM, Do KL, Park JY, Ames BN (1997) Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase. Proc Natl Acad Sci U S A 94(7):3064–3069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B, Auroma OI (1991) DNA damage by oxygen derived species. Its mechanism of action and measurement in mammalian systems. FEBS Lett 281:9–19

    Article  CAS  PubMed  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 2:298–300

    Article  Google Scholar 

  • Harman D (1972) The biological clock: The mitocondria. J Am Geriatr Soc 20(4):145–147

    Article  CAS  PubMed  Google Scholar 

  • Jang YM, Kendaiah S et al (2004) Doxorubicin treatment in vivo activates caspase-12 mediated cardiac apoptosis in both male and female rats. FEBS Lett 577(3):483–490

    Article  CAS  PubMed  Google Scholar 

  • Johns DR (1995) Seminars in medicine of the Beth Israel Hospital, Boston. Mitochondrial DNA and disease. N Engl J Med 333(10):638–644

    Article  CAS  PubMed  Google Scholar 

  • Johri A, Beal MF (2012) Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther 342(3):619–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristal BS, Chen J et al (1994) Sensitivity of mitochondrial transcription to different free radical species. Free Radic Biol Med 16(3):323–329

    Article  CAS  PubMed  Google Scholar 

  • Lee CM, Weindruch R et al (1997) Age-associated alterations of the mitochondrial genome. Free Radic Biol Med 22(7):1259–1269

    Article  CAS  PubMed  Google Scholar 

  • Lezza AM, Boffoli D et al (1994) Correlation between mitochondrial DNA 4977-bp deletion and respiratory chain enzyme activities in aging human skeletal muscles. Biochem Biophys Res Commun 205(1):772–779

    Article  CAS  PubMed  Google Scholar 

  • Lezza AM, Mecocci P et al (1999) Mitochondrial DNA 4977 bp deletion and OH8dG levels correlate in the brain of aged subjects but not Alzheimer’s disease patients. FASEB J 13(9):1083–1088

    Article  CAS  PubMed  Google Scholar 

  • Lloret A, Badia MC et al (2008) Gender and age-dependent differences in the mitochondrial apoptogenic pathway in Alzheimer’s disease. Free Radic Biol Med 44(12):2019–2025

    Article  CAS  PubMed  Google Scholar 

  • Lloret A, Fuchsberger T et al (2015) Molecular mechanisms linking amyloid beta toxicity and Tau hyperphosphorylation in Alzheimers disease. Free Radic Biol Med 83:186–191

    Article  CAS  PubMed  Google Scholar 

  • Martin JA, Sastre J et al (2001) Hepatic gamma-cystathionase deficiency in patients with AIDS. JAMA 285(11):1444–1445

    Article  CAS  PubMed  Google Scholar 

  • Miquel J (1992) An update on the mitochondrial-DNA mutation hypothesis of cell aging. Mutat Res 275(3-6):209–216

    Article  CAS  PubMed  Google Scholar 

  • Miquel J, Economos AC et al (1980) Mitochondrial role in cell aging. Exp Gerontol 15(6):575–591

    Article  CAS  PubMed  Google Scholar 

  • Navarro A, Gomez C et al (2004) Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer. Am J Physiol Regul Integr Comp Physiol 286(3):R505–R511

    Article  CAS  PubMed  Google Scholar 

  • Pearl R (1928) The rate of living. University of London Press, London

    Google Scholar 

  • Pereira C, Santos MS et al (1998) Mitochondrial function impairment induced by amyloid beta-peptide on PC12 cells. Neuroreport 9(8):1749–1755

    Article  CAS  PubMed  Google Scholar 

  • Perry G, Castellani RJ et al (1998) Reactive oxygen species mediate cellular damage in Alzheimer disease. J Alzheimers Dis 1(1):45–55

    Article  CAS  PubMed  Google Scholar 

  • Richter C, Park JW et al (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A 85:6465–6467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanz A, Hiona A et al (2007) Evaluation of sex differences on mitochondrial bioenergetics and apoptosis in mice. Exp Gerontol 42(3):173–182

    Article  CAS  PubMed  Google Scholar 

  • Sastre J, Pallardo FV et al (1996) Aging of the liver: age-associated mitochondrial damage in intact hepatocytes. Hepatology 24(5):1199–1205

    Article  CAS  PubMed  Google Scholar 

  • Sastre J, Millan A et al (1998) A Ginkgo biloba extract (EGb 761) prevents mitochondrial aging by protecting against oxidative stress. Free Radic Biol Med 24(2):298–304

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH (2006) Mitochondrial disease. Lancet 368(9529):70–82

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (1991) Amyloid protein and Alzheimer's disease. Sci Am 265(5):68–71. 74-6, 78

    Article  CAS  PubMed  Google Scholar 

  • Shen CC, Wertelecki W et al (1995) Repair of mitochondrial DNA damage induced by bleomycin in human cells. Mutat Res 337(1):19–23

    Article  CAS  PubMed  Google Scholar 

  • Shigenaga MK, Hagen TM et al (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A 91:10771–10778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suter M, Richter C (1999) Fragmented mitochondrial DNA is the predominant carrier of oxidized DNA bases. Biochemistry 38(1):459–464

    Article  CAS  PubMed  Google Scholar 

  • Vina J, Borras C et al (2007) Theories of ageing. IUBMB Life 59(4-5):249–254

    Article  CAS  PubMed  Google Scholar 

  • Vina J, Borras C et al (2013) The free radical theory of aging revisited: the cell signaling disruption theory of aging. Antioxid Redox Signal 19(8):779–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin F, Sancheti H et al (2004) Mitochondrial function in ageing: coordination with signalling and transcriptional pathways. J Physiol 594(8):2025–2042

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Viña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Viña, J., Borras, C. (2018). Mitochondria and Ageing. In: Oliveira, P. (eds) Mitochondrial Biology and Experimental Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-319-73344-9_4

Download citation

Publish with us

Policies and ethics