Skip to main content

Targeting Mitochondria: The Road to Mitochondriotropic Antioxidants and Beyond

  • Chapter
  • First Online:
Mitochondrial Biology and Experimental Therapeutics

Abstract

Mitochondria are sub-cellular organelles that play a central role in energy metabolism, being these organelles currently recognized as one important target for new drug discovery programs addressed to find innovative therapeutic solutions for diverse pathologic events, such as cancer, cardiovascular, and neurological diseases. Although attractive, the success of the strategies developed so far has been hampered by several challenges and limitations, and until now the Food and Drug Administration (FDA) has not approved a drug for mitochondrial therapy. Currently, the most effective strategy to deliver drugs specifically to mitochondria is the covalent link of a lipophilic cation, namely triphenylphosphonium (TPP), to a pharmacophore of interest. Within this framework two mitochondriotropic antioxidants (MitoQ and SkQ1) have entered in human clinical trials as a therapeutic solution for oxidative-stress related diseases. In this chapter, the efforts done so far to target small-molecule antioxidants to mitochondria as potential therapeutics or diagnostic tools have been reviewed. Although TPP cation has been the most extensively used mitochondrial-targeting cation, there are still controversies surrounding this approach, namely related with its intrinsic toxicity. Consequently, efforts must be done in finding new cation carriers, and to guarantee that the cargo does indeed access the mitochondrial matrix and does not merely associate with the mitochondrial membranes. Moreover, in vivo biodistribution, pharmacokinetics and long-term toxic effects studies to provide accurate information about efficacy and toxicity are still an emergent issue to make available the translation from bench to bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-DG:

2-Deoxy-D-glucose

CoQ:

Co-enzyme Q

EPR:

Electron paramagnetic resonance

ETC:

Electron transport chain

FAD:

Flavin adenine dinucleotide

GPx:

Glutahione peroxidase

GSH:

Reduced glutathione

H2O2 :

Hydrogen peroxide

H2S:

Hydrogen sulfide

MIM:

Mitochondrial inner membrane

mPTP:

Mitochondrial permeability transition pore

mtDNA:

Mitochondrial DNA

ONOO :

Peroxynitrite

OXPHOS:

Oxidative phosphorylation

Prx3:

Peroxiredoxine 3

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TCA:

Tricarboxylic acid

TP:

Two-photon

TPP or PPh3 :

Triphenylphosphonium

ΔΨm:

Mitochondrial membrane potential

References

  • Aggarwal BB, Harikumar KB (2009) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41(1):40–59

    Article  CAS  PubMed  Google Scholar 

  • Agrawal A, Mabalirajan U (2016) Rejuvenating cellular respiration for optimizing respiratory function: targeting mitochondria. Am J Physiol Lung Cell Mol Physiol 310(2):L103–L113

    Article  PubMed  Google Scholar 

  • Alfadda AA, Sallam RM (2012) Reactive oxygen species in health and disease. BioMed Res Int 2012:936486

    Google Scholar 

  • Anders M (2013) Exploiting endobiotic metabolic pathways to target xenobiotic antioxidants to mitochondria. Mitochondrion 13(5):454–463

    Article  CAS  PubMed  Google Scholar 

  • Andreux PA et al (2013) Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discov 12(6):465–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antonenko YN et al (2008) Protective effects of mitochondria-targeted antioxidant SkQ in aqueous and lipid membrane environments. J Membr Biol 222(3):141

    Article  CAS  PubMed  Google Scholar 

  • Apostolova N, Victor VM (2015) Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Antioxid Redox Signal 22(8):686–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae SK et al (2013) A ratiometric two-photon fluorescent probe reveals reduction in mitochondrial H2S productiond in Parkinson’s disease gene knockout astrocytes. J Am Chem Soc 135(26):9915–9923

    Article  CAS  PubMed  Google Scholar 

  • Bakeeva L et al (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS-and age-related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke). Biochem Mosc 73(12):1288–1299

    Article  CAS  Google Scholar 

  • Barzegar A, Moosavi-Movahedi AA (2011) Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PLoS One 6(10):e26012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biasutto L et al (2008) Development of mitochondria-targeted derivatives of resveratrol. Bioorg Med Chem Lett 18(20):5594–5597

    Article  CAS  PubMed  Google Scholar 

  • Biasutto L et al (2010) Impact of mitochondriotropic quercetin derivatives on mitochondria. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1797(2):189–196

    Article  CAS  Google Scholar 

  • Brookes PS et al (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287(4):C817–C833

    Article  CAS  PubMed  Google Scholar 

  • Cairns AG et al (2015) Targeting mitochondria with small molecules: the preparation of MitoB and MitoP as exomarkers of mitochondrial hydrogen peroxide. Methods Mol Biol 1265:25–50. https://doi.org/10.1007/978-1-4939-2288-8_3

    Article  CAS  PubMed  Google Scholar 

  • Cheng S et al (2010) Quercetin induces tumor-selective apoptosis through downregulation of Mcl-1 and activation of Bax. Clin Cancer Res 16(23):5679–5691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng G et al (2015) Antiproliferative effects of mitochondria-targeted cationic antioxidants and analogs: Role of mitochondrial bioenergetics and energy-sensing mechanism. Cancer Lett 365(1):96–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng G et al (2016) Mitochondria-targeted analogues of metformin exhibit enhanced antiproliferative and radiosensitizing effects in pancreatic cancer cells. Cancer Res 76(13):3904–3915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chouchani ET et al (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med 19(6):753–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochemé HM et al (2011) Measurement of H 2 O 2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab 13(3):340–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cochemé HM et al (2012) Using the mitochondria-targeted ratiometric mass spectrometry probe MitoB to measure H2O2 in living Drosophila. Nat Protoc 7(5):946

    Article  PubMed  CAS  Google Scholar 

  • Cree L et al (2009) The inheritance of pathogenic mitochondrial DNA mutations. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1792(12):1097–1102

    Article  CAS  Google Scholar 

  • Dhanasekaran A et al (2004) Supplementation of endothelial cells with mitochondria-targeted antioxidants inhibit peroxide-induced mitochondrial iron uptake, oxidative damage, and apoptosis. J Biol Chem 279(36):37575–37587

    Article  CAS  PubMed  Google Scholar 

  • Dhanasekaran A et al (2005) Mitochondria superoxide dismutase mimetic inhibits peroxide-induced oxidative damage and apoptosis: role of mitochondrial superoxide. Free Radic Biol Med 39(5):567–583

    Article  CAS  PubMed  Google Scholar 

  • Dickinson BC, Chang CJ (2008) A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc 130(30):9638–9639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickinson BC et al (2013) Preparation and use of MitoPY1 for imaging hydrogen peroxide in mitochondria of live cells. Nat Protoc 8(6):1249–1259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dikalov SI et al (2011) EPR detection of cellular and mitochondrial superoxide using cyclic hydroxylamines. Free Radic Res 45(4):417–430

    Article  CAS  PubMed  Google Scholar 

  • Dong L-F et al (2011) Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J Biol Chem 286(5):3717–3728

    Article  CAS  PubMed  Google Scholar 

  • Figueira TR et al (2013) Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid Redox Signal 18(16):2029–2074

    Article  CAS  PubMed  Google Scholar 

  • Filipovska A et al (2005) Synthesis and characterization of a triphenylphosphonium-conjugated peroxidase mimetic insights into the interaction of ebselen with mitochondria. J Biol Chem 280(25):24113–24126

    Article  CAS  PubMed  Google Scholar 

  • Finichiu PG et al (2015) A mitochondria-targeted derivative of ascorbate: MitoC. Free Radic Biol Med 89:668–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerő D et al (2016) The novel mitochondria-targeted hydrogen sulfide (H 2 S) donors AP123 and AP39 protect against hyperglycemic injury in microvascular endothelial cells in vitro. Pharmacol Res 113:186–198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghosh A et al (2016) Mitoapocynin treatment protects against neuroinflammation and dopaminergic neurodegeneration in a preclinical animal model of Parkinson’s disease. J Neuroimmune Pharmacol 11(2):259–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Han M et al (2014) Mitochondrial delivery of doxorubicin via triphenylphosphine modification for overcoming drug resistance in MDA-MB-435/DOX cells. Mol Pharm 11(8):2640–2649

    Article  CAS  PubMed  Google Scholar 

  • Hu JJ et al (2015) Fluorescent probe HKSOX-1 for imaging and detection of endogenous superoxide in live cells and in vivo. J Am Chem Soc 137(21):6837–6843

    Article  CAS  PubMed  Google Scholar 

  • Hughes G et al (2005) Mitochondrial reactive oxygen species regulate the temporal activation of nuclear factor κB to modulate tumour necrosis factor-induced apoptosis: evidence from mitochondria-targeted antioxidants. Biochem J 389(1):83–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurko O (2013) Drug development for rare mitochondrial disorders. Neurotherapeutics 10(2):286–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jameson VJ et al (2015) Synthesis of triphenylphosphonium vitamin E derivatives as mitochondria-targeted antioxidants. Tetrahedron 71(44):8444–8453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jara JA et al (2014) Antiproliferative and uncoupling effects of delocalized, lipophilic, cationic gallic acid derivatives on cancer cell lines. Validation in vivo in singenic mice. J Med Chem 57(6):2440–2454

    Article  CAS  PubMed  Google Scholar 

  • Jayakumar S et al (2017) Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activity. Free Radic Biol Med 113:530–538

    Article  CAS  PubMed  Google Scholar 

  • Jin H et al (2014) Mitochondria-targeted antioxidants for treatment of Parkinson's disease: preclinical and clinical outcomes. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1842(8):1282–1294

    Article  CAS  Google Scholar 

  • Kalyanaraman B, Dranka BP, Hardy M, Michalski R, Zielonka J (2014) HPLC-based monitoring of products formed from hydroethidine-based fluorogenic probes–the ultimate approach for intra- and extracellular superoxide detection. Biochim Biophys Acta. 1840(2):739–744. https://doi.org/10.1016/j.bbagen.2013.05.008

    Article  CAS  PubMed  Google Scholar 

  • Kalyanaraman B et al (2016) Mito-honokiol compounds and methods of synthesis and use thereof, Google Patents

    Google Scholar 

  • Kanabus M et al (2014) Development of pharmacological strategies for mitochondrial disorders. Br J Pharmacol 171(8):1798–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karwi QG et al (2017) AP39, a mitochondria-targeting hydrogen sulfide (H2S) donor, protects against myocardial reperfusion injury independently of salvage kinase signalling. Br J Pharmacol 174(4):287–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur A et al (2015a) Mitochondrially targeted redox probe reveals the variations in oxidative capacity of the haematopoietic cells. Org Biomol Chem 13(24):6686–6689

    Article  CAS  PubMed  Google Scholar 

  • Kaur A et al (2015b) A FRET-based ratiometric redox probe for detecting oxidative stress by confocal microscopy, FLIM and flow cytometry. Chem Commun 51(52):10510–10513

    Article  CAS  Google Scholar 

  • Kaur A et al (2016) Reversible fluorescent probes for biological redox states. Angew Chem Int Ed 55(5):1602–1613

    Article  CAS  Google Scholar 

  • Kelso GF et al (2012) A mitochondria-targeted macrocyclic Mn (II) superoxide dismutase mimetic. Chem Biol 19(10):1237–1246

    Article  CAS  PubMed  Google Scholar 

  • Kim HM, Cho BR (2013) Mitochondrial-targeted two-photon fluorescent probes for zinc ions, and thiols in living tissues. Oxid Med Cell Longev 2013:323619

    PubMed  PubMed Central  Google Scholar 

  • Le Trionnaire S et al (2014) The synthesis and functional evaluation of a mitochondria-targeted hydrogen sulfide donor,(10-oxo-10-(4-(3-thioxo-3 H-1, 2-dithiol-5-yl) phenoxy) decyl) triphenylphosphonium bromide (AP39). MedChemComm 5(6):728–736

    Article  Google Scholar 

  • Levitskii D, Skulachev V (1972) Effects of penetrating synthetic ions on the respiration of mitochondria and submitochondrial particles. Mol Biol 6(3):267

    CAS  PubMed  Google Scholar 

  • Li L et al (2011) Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51:169–187

    Article  CAS  PubMed  Google Scholar 

  • Li P et al (2013) Mitochondria-targeted reaction-based two-photon fluorescent probe for imaging of superoxide anion in live cells and in vivo. Anal Chem 85(20):9877–9881

    Article  CAS  PubMed  Google Scholar 

  • Liang HL et al (2010) SOD1 and MitoTEMPO partially prevent mitochondrial permeability transition pore opening, necrosis, and mitochondrial apoptosis after ATP depletion recovery. Free Radic Biol Med 49(10):1550–1560

    Article  CAS  PubMed  Google Scholar 

  • Liberman E, Topaly V (1969) Permeability of bimolecular phospholipid membranes for fat-soluble ions. Biofizika 14(3):452

    CAS  PubMed  Google Scholar 

  • Lim CS et al (2011a) Ratiometric detection of mitochondrial thiols with a two-photon fluorescent probe. J Am Chem Soc 133(29):11132–11135

    Article  CAS  PubMed  Google Scholar 

  • Lim S et al (2011b) Mitochondria-targeted antioxidants protect pancreatic β-cells against oxidative stress and improve insulin secretion in glucotoxicity and glucolipotoxicity. Cell Physiol Biochem 28(5):873–886

    Article  CAS  PubMed  Google Scholar 

  • Lippert AR et al (2011) Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc Chem Res 44(9):793–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logan A et al (2014) Using exomarkers to assess mitochondrial reactive species in vivo. Biochimica et Biophysica Acta (BBA)-General Subjects 1840(2):923–930

    Article  CAS  Google Scholar 

  • Logan A et al (2016) Assessing the mitochondrial membrane potential in cells and in vivo using targeted click chemistry and mass spectrometry. Cell Metab 23(2):379–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madak JT, Neamati N (2015) Membrane permeable lipophilic cations as mitochondrial directing groups. Curr Top Med Chem 15(8):745–766

    Article  CAS  PubMed  Google Scholar 

  • Malty RH et al (2014) Mitochondrial targets for pharmacological intervention in human disease. J Proteome Res 14(1):5–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mancuso M et al (2012) Drugs and mitochondrial diseases: 40 queries and answers. Expert Opin Pharmacother 13(4):527–543

    Article  CAS  PubMed  Google Scholar 

  • Maroz A et al (2008) Pulse radiolysis investigation on the mechanism of the catalytic action of Mn(II)−pentaazamacrocycle compounds as superoxide dismutase mimetics. Chem A Eur J 112(22):4929–4935

    CAS  Google Scholar 

  • Masanta G et al (2012) A mitochondria-localized two-photon fluorescent probe for ratiometric imaging of hydrogen peroxide in live tissue. Chem Commun 48(29):3518–3520

    Article  CAS  Google Scholar 

  • Mattarei A et al (2008) A mitochondriotropic derivative of quercetin: a strategy to increase the effectiveness of polyphenols. Chembiochem 9(16):2633–2642

    Article  CAS  PubMed  Google Scholar 

  • Mattarei A et al (2011) Redox properties and cytotoxicity of synthetic isomeric mitochondriotropic derivatives of the natural polyphenol quercetin. Eur J Org Chem 2011(28):5577–5586

    Article  CAS  Google Scholar 

  • Miao J et al (2016) A new class of fast-response and highly selective fluorescent probes for visualizing peroxynitrite in live cells, subcellular organelles, and kidney tissue of diabetic rats. Biomaterials 107:33–43

    Article  CAS  PubMed  Google Scholar 

  • Miles SL et al (2014) Molecular and physiological actions of quercetin: need for clinical trials to assess its benefits in human disease. Nutr Rev 72(11):720–734

    Article  PubMed  Google Scholar 

  • Millard M et al (2013) A selective mitochondrial-targeted chlorambucil with remarkable cytotoxicity in breast and pancreatic cancers. J Med Chem 56(22):9170–9179

    Article  CAS  PubMed  Google Scholar 

  • Mirvish SS (1986) Effects of vitamins C and E on N-nitroso compound formation, carcinogenesis, and cancer. Cancer 58(S8):1842–1850

    Article  CAS  PubMed  Google Scholar 

  • Mitchell T et al (2012) Controlling radicals in the powerhouse: development of MitoSOD. Chem Biol 19(10):1217–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy MP (2008) Targeting lipophilic cations to mitochondria. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1777(7):1028–1031

    Article  CAS  Google Scholar 

  • Murphy MP (2016) Understanding and preventing mitochondrial oxidative damage. Biochem Soc Trans 44(5):1219–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy MP, Smith RA (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 47:629–656

    Article  CAS  PubMed  Google Scholar 

  • Nickel A et al (2014) Mitochondrial reactive oxygen species production and elimination. J Mol Cell Cardiol 73:26–33

    Article  CAS  PubMed  Google Scholar 

  • Obrenovich ME et al (2010) The role of polyphenolic antioxidants in health, disease, and aging. Rejuvenation Res 13(6):631–643

    Article  CAS  PubMed  Google Scholar 

  • Pagano G et al (2014) Oxidative stress and mitochondrial dysfunction across broad-ranging pathologies: toward mitochondria-targeted clinical strategies. Oxid Med Cell Longev 2014:541230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfeffer G, Majamaa K, Turnbull DM, Thorburn D, Chinnery PF (2012) Treatment for mitochondrial disorders. Cochrane Database Syst Rev 4:CD004426. https://doi.org/10.1002/14651858.CD004426.pub3

    Google Scholar 

  • Pfeffer G et al (2013) New treatments for mitochondrial disease—no time to drop our standards. Nat Rev Neurol 9(8):474–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prime TA et al (2009) A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury. Proc Natl Acad Sci U S A 106(26):10764–10769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pun PBL, Murphy MP (2012) Pathological significance of mitochondrial glycation. Int J Cell Biol 2012:843505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pun PBL et al (2014) A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes. Free Radic Biol Med 67:437–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pung YF et al (2012) Resolution of mitochondrial oxidative stress rescues coronary collateral growth in Zucker obese fatty rats. Arterioscler Thromb Vasc Biol 32(2):325–334

    Article  CAS  PubMed  Google Scholar 

  • Reddy CA et al (2014) Mitochondrial-targeted curcuminoids: a strategy to enhance bioavailability and anticancer efficacy of curcumin. PLoS One 9(3):e89351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robinson KM et al (2006) Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci U S A 103(41):15038–15043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson KM et al (2008) The selective detection of mitochondrial superoxide by live cell imaging. Nat Protoc 3(6):941

    Article  CAS  PubMed  Google Scholar 

  • Roelofs BA et al (2015) Low micromolar concentrations of the superoxide probe MitoSOX uncouple neural mitochondria and inhibit complex IV. Free Radic Biol Med 86:250–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross M et al (2005) Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochem Mosc 70(2):222–230

    Article  CAS  Google Scholar 

  • Russo M et al (2012) The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochem Pharmacol 83(1):6–15

    Article  CAS  PubMed  Google Scholar 

  • Saeidnia S, Abdollahi M (2013) Toxicological and pharmacological concerns on oxidative stress and related diseases. Toxicol Appl Pharmacol 273(3):442–455

    Article  CAS  PubMed  Google Scholar 

  • Salvemini D et al (2001) Pharmacological manipulation of the inflammatory cascade by the superoxide dismutase mimetic, M40403. Br J Pharmacol 132(4):815–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandoval-Acuña C et al (2014) Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Arch Biochem Biophys 559:75–90

    Article  PubMed  CAS  Google Scholar 

  • Sassi N et al (2012) Cytotoxicity of a mitochondriotropic quercetin derivative: mechanisms. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1817(7):1095–1106

    Article  CAS  Google Scholar 

  • Sassi N et al (2014) Mitochondria-targeted resveratrol derivatives act as cytotoxic pro-oxidants. Curr Pharm Des 20(2):172–179

    Article  CAS  PubMed  Google Scholar 

  • Skulachev VP et al (2009) An attempt to prevent senescence: a mitochondrial approach. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1787(5):437–461

    Article  CAS  Google Scholar 

  • Skulachev VP et al (2010) Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs). Biochimica et Biophysica Acta (BBA)-Bioenergetics 1797(6):878–889

    Article  CAS  Google Scholar 

  • Smith RA et al (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci U S A 100(9):5407–5412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith RA et al (2011) Mitochondria-targeted small molecule therapeutics and probes. Antioxid Redox Signal 15(12):3021–3038

    Article  CAS  PubMed  Google Scholar 

  • Smith RA et al (2012) Mitochondrial pharmacology. Trends Pharmacol Sci 33(6):341–352

    Article  CAS  PubMed  Google Scholar 

  • Smoliga JM et al (2011) Resveratrol and health–a comprehensive review of human clinical trials. Mol Nutr Food Res 55(8):1129–1141

    Article  CAS  PubMed  Google Scholar 

  • Sorriento D et al (2014) Targeting mitochondria as therapeutic strategy for metabolic disorders. Sci World J 2014:604685

    Article  Google Scholar 

  • Suomalainen A, Battersby BJ (2017) Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat Rev Mol Cell Biol. https://doi.org/10.1038/nrm.2017.66

  • Szabó C et al (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6(8):662

    Article  PubMed  CAS  Google Scholar 

  • Szczesny B et al (2014) AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide 41:120–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tauskela JS (2007) MitoQ--a mitochondria-targeted antioxidant. IDrugs 10(6):399–412

    CAS  PubMed  Google Scholar 

  • Teixeira J et al (2012) Rational discovery and development of a mitochondria-targeted antioxidant based on cinnamic acid scaffold. Free Radic Res 46(5):600–611

    Article  CAS  PubMed  Google Scholar 

  • Teixeira J et al (2017) Development of a mitochondriotropic antioxidant based on caffeic acid: proof of concept on cellular and mitochondrial oxidative stress models. J Med Chem 60(16):7084–7098

    Article  CAS  PubMed  Google Scholar 

  • Teixeira J et al (2018) Disruption of mitochondrial function as mechanism for anti-cancer activity of a novel mitochondriotropic menadione derivative. Toxicology 393:123–139

    Article  CAS  PubMed  Google Scholar 

  • Trnka J et al (2008) A mitochondria-targeted nitroxide is reduced to its hydroxylamine by ubiquinol in mitochondria. Free Radic Biol Med 44(7):1406–1419

    Article  CAS  PubMed  Google Scholar 

  • Visser AJ et al (1979) Fluorescence properties of reduced flavins and flavoproteins. FEBS J 101(1):13–21

    CAS  Google Scholar 

  • Wagner BK et al (2008) Large-scale chemical dissection of mitochondrial function. Nat Biotechnol 26(3):343–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg F et al (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A 107(19):8788–8793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisnovsky S et al (2016) Mitochondrial Chemical Biology: new Probes elucidate the secrets of the Powerhouse of the cell. Cell Chem Biol 23(8):917–927

    Article  CAS  PubMed  Google Scholar 

  • Wojtala A et al (2014) Methods to monitor ROS production by fluorescence microscopy and fluorometry. Methods Enzymol 542:243–262

    Article  CAS  PubMed  Google Scholar 

  • Wu Z et al (2016) Visualizing hydrogen sulfide in mitochondria and lysosome of living cells and in tumors of living mice with positively charged fluorescent chemosensors. Anal Chem 88(18):9213–9218

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y et al (2008) BODIPY-based fluorescent redox potential sensors that utilize reversible redox properties of flavin. Chembiochem 9(6):853–856

    Article  CAS  PubMed  Google Scholar 

  • Yang Y et al (2016) Mitochondria and mitochondrial ROS in cancer: novel targets for anticancer therapy. J Cell Physiol 231(12):2570–2581

    Article  CAS  PubMed  Google Scholar 

  • Yang K et al (2017) Mitochondrially targeted fluorescent redox sensors. Interface Focus 7(2):20160105

    Article  PubMed  Google Scholar 

  • Yeow J et al (2014) A novel flavin derivative reveals the impact of glucose on oxidative stress in adipocytes. Chem Commun 50(60):8181–8184

    Article  CAS  Google Scholar 

  • Zielonka J et al (2008) Cytochrome c-mediated oxidation of hydroethidine and mito-hydroethidine in mitochondria: identification of homo- and heterodimers. Free Radic Biol Med 44(5):835–846

    Article  CAS  PubMed  Google Scholar 

  • Zielonka J et al (2017) Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem Rev 117(15):10043–10120

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by FEDER funds through the Operational Programme Competitiveness Factors—COMPETE and national funds by FCT—Foundation for Science and Technology under research grants PTDC/DTP-FTO/2433/2014, POCI-01-0145-FEDER-016659, POCI-01-0145-FEDER-007440, POCI-01-0145-FEDER-006980, and NORTE-01-0145-FEDER-000028. R. Amorim (PTDC/DTP-FTO/2433/2014), S. Benfeito (SFRH/BD/99189/2013), J. Teixeira (NORTE-01-0145-FEDER-000028) and F. Cagide (NORTE-01-0145-FEDER-000028) grants are supported by the European Regional Development Fund (ERDF) through the COMPETE 2020—Operational Programme for Competitiveness and Internationalisation and Portuguese national funds.

Declaration of Interest

The authors declare no competing financial interest. PJO and FB are co-founders of the CNC spin-off company MitoTAG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Borges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amorim, R., Benfeito, S., Teixeira, J., Cagide, F., Oliveira, P.J., Borges, F. (2018). Targeting Mitochondria: The Road to Mitochondriotropic Antioxidants and Beyond. In: Oliveira, P. (eds) Mitochondrial Biology and Experimental Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-319-73344-9_16

Download citation

Publish with us

Policies and ethics