Advertisement

Nanoparticle

  • Manoranjan Arakha
  • Suman Jha
Chapter
Part of the Series in BioEngineering book series (SERBIOENG)

Abstract

Fifty-seven years ago, on the evening of December 29, 1959, best known paper of nanotechnology entitled ‘There’s Plenty of Room at the Bottom’ was delivered by physicist professor Richard Feynman to the American Physical Society at the California Institute of Technology, Pasadena Toumey (Nat Nanotechnology 4:783–784, 2009 [1]). In the paper, Dr. Richard Feynman described the possibilities, if we could learn to control single atom and molecules Toumey (Nat Nanotechnology 4:783–784, 2009 [1]). The work led the community to the era of nanotechnology.

References

  1. 1.
    Toumey, C. (2009). Plenty of room, plenty of history. Nature Nanotechnology, 4, 783–784.CrossRefGoogle Scholar
  2. 2.
    Feynman, R. P. (1961). There’s plenty of room at the bottom. In HD Gilbert (Ed.), New York: Miniaturization reinhold.Google Scholar
  3. 3.
    Bhattacharyya, D., Singh, S., Satnalika, N., Khandelwal, A. & Jeon, S.-H. (2009). Nanotechnology, big things from a tiny world: A review. Nanotechnology 2.Google Scholar
  4. 4.
    Kim, H. R., Kim, M. J., Lee, S. Y., Oh, S. M., & Chung, K. H. (2011). Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 726, 129–135.CrossRefGoogle Scholar
  5. 5.
    Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 6, 257–262.CrossRefGoogle Scholar
  6. 6.
    Fang, M., Chen, J. H., Xu, X. L., Yang, P. H., & Hildebrand, H. F. (2006). Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. International Journal of Antimicrobial Agents, 27, 513–517.CrossRefGoogle Scholar
  7. 7.
    Sreeprasad, T. S. & Pradeep, T. (2013). In Springer handbook of nanomaterials (pp. 303–388). Springer.Google Scholar
  8. 8.
    Rai, M. & Duran, N. (2011) Metal nanoparticles in microbiology. Springer Science & Business Media.Google Scholar
  9. 9.
    Ko, S., & Gunasekaran, S. (2006). Preparation of sub-100-nm β-lactoglobulin (BLG) nanoparticles. Journal of Microencapsulation, 23, 887–898.CrossRefGoogle Scholar
  10. 10.
    Lohcharoenkal, W., Wang, L., Chen, Y. C. & Rojanasakul, Y. (2014). Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Research International 2011.Google Scholar
  11. 11.
    Langer, K., et al. (2003). Optimization of the preparation process for human serum albumin (HSA) nanoparticles. International Journal of Pharmaceutics, 257, 169–180.CrossRefGoogle Scholar
  12. 12.
    Yang, L., et al. (2007). Preparation, characterization and biodistribution of the lactone form of 10-hydroxycamptothecin (HCPT)-loaded bovine serum albumin (BSA) nanoparticles. International Journal of Pharmaceutics, 340, 163–172.CrossRefGoogle Scholar
  13. 13.
    Yang, N., & Aoki, K. (2005). Voltammetry of the silver alkylcarboxylate nanoparticles in suspension. Electrochimica Acta, 50, 4868–4872.CrossRefGoogle Scholar
  14. 14.
    Duan, H., Wang, D., & Li, Y. (2015). Green chemistry for nanoparticle synthesis. Chemical Society Reviews, 44, 5778–5792.CrossRefGoogle Scholar
  15. 15.
    Banerjee, P., Satapathy, M., Mukhopahayay, A., & Das, P. (2014). Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: Synthesis, characterization, antimicrobial property and toxicity analysis. Bioresources and Bioprocessing, 1, 1–10.CrossRefGoogle Scholar
  16. 16.
    Zhang, X. et al. (2014). Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Scientific Reports, 4.Google Scholar
  17. 17.
    Shoeb, M., et al. (2013). ROS-dependent anticandidal activity of zinc oxide nanoparticles synthesized by using egg albumen as a biotemplate. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4, 035015.Google Scholar
  18. 18.
    Srivastava, V., Gusain, D., & Sharma, Y. C. (2013). Synthesis, characterization and application of zinc oxide nanoparticles (n-ZnO). Ceramics International, 39, 9803–9808.CrossRefGoogle Scholar
  19. 19.
    Zhang, H.-J., & Xiong, H.-M. (2013). Biological applications of ZnO nanoparticles. Current Molecular Imaging, 2, 177–192.CrossRefGoogle Scholar
  20. 20.
    Wang, E. C., & Wang, A. Z. (2014). Nanoparticles and their applications in cell and molecular biology. Integrative Biology, 6, 9–26.CrossRefGoogle Scholar
  21. 21.
    Daniel, M.-C., & Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104, 293–346.CrossRefGoogle Scholar
  22. 22.
    Weissleder, R. (2006). Molecular imaging in cancer. Science, 312, 1168–1171.CrossRefGoogle Scholar
  23. 23.
    Arakha, M. et al. (2015). Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Scientific Reports, 5.Google Scholar
  24. 24.
    Zhao, M., Beauregard, D. A., Loizou, L., Davletov, B., & Brindle, K. M. (2001). Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nature Medicine, 7, 1241–1244.CrossRefGoogle Scholar
  25. 25.
    Mahdavi, M., et al. (2013). Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules, 18, 7533–7548.CrossRefGoogle Scholar
  26. 26.
    Gu, H., Xu, K., Xu, C. & Xu, B. (2006). Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chemical Communications, 941–949.Google Scholar
  27. 27.
    Mody, V. V., Siwale, R., Singh, A., & Mody, H. R. (2010). Introduction to metallic nanoparticles. Journal of Pharmacy and Bioallied Sciences, 2, 282.CrossRefGoogle Scholar
  28. 28.
    Qin, Y. (2005). Silver-containing alginate fibres and dressings. International wound journal, 2, 172–176.CrossRefGoogle Scholar
  29. 29.
    Atiyeh, B. S., Costagliola, M., Hayek, S. N. & Dibo, S. A. (2007). Effect of silver on burn wound infection control and healing: Review of the literature. Burns, 33, 139–148.Google Scholar
  30. 30.
    Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275, 177–182.CrossRefGoogle Scholar
  31. 31.
    Jain, N., Bhargava, A., Majumdar, S., Tarafdar, J., & Panwar, J. (2011). Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: A mechanism perspective. Nanoscale, 3, 635–641.CrossRefGoogle Scholar
  32. 32.
    Bangham, A. (1993). Liposomes: The Babraham connection. Chemistry and Physics of Lipids, 64, 275–285.CrossRefGoogle Scholar
  33. 33.
    Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery, 4, 145–160.CrossRefGoogle Scholar
  34. 34.
    Felgner, P. L., & Ringold, G. (1989). Cationic liposome-mediated transfection. Nature, 337, 387.CrossRefGoogle Scholar
  35. 35.
    Felgner, P. L., et al. (1987). Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proceedings of the National Academy of Sciences, 84, 7413–7417.CrossRefGoogle Scholar
  36. 36.
    Elzoghby, A. O., Samy, W. M., & Elgindy, N. A. (2012). Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of Controlled Release, 157, 168–182.CrossRefGoogle Scholar
  37. 37.
    Miele, E., Spinelli, G. P., Miele, E., Tomao, F., & Tomao, S. (2009). Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. International Journal of Nanomedicine, 4, 99–105.Google Scholar
  38. 38.
    Hawkins, M. J., Soon-Shiong, P., & Desai, N. (2008). Protein nanoparticles as drug carriers in clinical medicine. Advanced Drug Delivery Reviews, 60, 876–885.CrossRefGoogle Scholar
  39. 39.
    Gradishar, W. J., et al. (2005). Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil–based paclitaxel in women with breast cancer. Journal of Clinical Oncology, 23, 7794–7803.CrossRefGoogle Scholar
  40. 40.
    Gref, R., et al. (1994). Biodegradable long-circulating polymeric nanospheres. Science, 263, 1600–1603.CrossRefGoogle Scholar
  41. 41.
    Torchilin, V. P. (2007). Micellar nanocarriers: Pharmaceutical perspectives. Pharmaceutical Research, 24, 1–16.CrossRefGoogle Scholar
  42. 42.
    Wang, A. Z., et al. (2008). Biofunctionalized targeted nanoparticles for therapeutic applications. Expert opinion on biological therapy, 8, 1063–1070.CrossRefGoogle Scholar
  43. 43.
    Chen, L., Remondetto, G. E., & Subirade, M. (2006). Food protein-based materials as nutraceutical delivery systems. Trends in Food Science & Technology, 17, 272–283.CrossRefGoogle Scholar
  44. 44.
    Collier, C., Vossmeyer, T., & Heath, J. (1998). Nanocrystal superlattices. Annual Review of Physical Chemistry, 49, 371–404.CrossRefGoogle Scholar
  45. 45.
    Jovin, T. M. (2003). Quantum dots finally come of age. Nature Biotechnology, 21, 32–33.CrossRefGoogle Scholar
  46. 46.
    Chang, Y. P., Pinaud, F., Antelman, J., & Weiss, S. (2008). Tracking bio-molecules in live cells using quantum dots. Journal of Biophotonics, 1, 287–298.CrossRefGoogle Scholar
  47. 47.
    Chan, W. C., et al. (2002). Luminescent quantum dots for multiplexed biological detection and imaging. Current Opinion in Biotechnology, 13, 40–46.CrossRefGoogle Scholar
  48. 48.
    Jamieson, T., et al. (2007). Biological applications of quantum dots. Biomaterials, 28, 4717–4732.CrossRefGoogle Scholar
  49. 49.
    Verma, A., & Stellacci, F. (2010). Effect of surface properties on nanoparticle–cell interactions. Small (Weinheim an der Bergstrasse, Germany), 6, 12–21.CrossRefGoogle Scholar
  50. 50.
    Jiang, W., Kim, B. Y., Rutka, J. T., & Chan, W. C. (2008). Nanoparticle-mediated cellular response is size-dependent. Nature Nanotechnology, 3, 145–150.CrossRefGoogle Scholar
  51. 51.
    Vertegel, A. A., Siegel, R. W., & Dordick, J. S. (2004). Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir, 20, 6800–6807.CrossRefGoogle Scholar
  52. 52.
    Shang, W., Nuffer, J. H., Dordick, J. S., & Siegel, R. W. (2007). Unfolding of ribonuclease A on silica nanoparticle surfaces. Nano Letters, 7, 1991–1995.CrossRefGoogle Scholar
  53. 53.
    Fei, L., & Perrett, S. (2009). Effect of nanoparticles on protein folding and fibrillogenesis. International Journal of Molecular Sciences, 10, 646–655.CrossRefGoogle Scholar
  54. 54.
    Wu, X. & Narsimhan, G. Effect of surface concentration on secondary and tertiary conformational changes of lysozyme adsorbed on silica nanoparticles. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics, 1784, 1694–1701 (2008).Google Scholar
  55. 55.
    Khan, J. A., Pillai, B., Das, T. K., Singh, Y., & Maiti, S. (2007). Molecular effects of uptake of gold nanoparticles in HeLa cells. ChemBioChem, 8, 1237–1240.CrossRefGoogle Scholar
  56. 56.
    Xie, J., Xu, C., Kohler, N., Hou, Y., & Sun, S. (2007). Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Advanced Materials, 19, 3163–3166.CrossRefGoogle Scholar
  57. 57.
    Harush-Frenkel, O., Debotton, N., Benita, S., & Altschuler, Y. (2007). Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochemical and Biophysical Research Communications, 353, 26–32.CrossRefGoogle Scholar
  58. 58.
    Chen, K. L., & Bothun, G. D. (2013). Nanoparticles meet cell membranes: Probing nonspecific interactions using model membranes. Environmental Science and Technology, 48, 873–880.CrossRefGoogle Scholar
  59. 59.
    Hajipour, M. J., et al. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30, 499–511.CrossRefGoogle Scholar
  60. 60.
    Scott, J. R., & Barnett, T. C. (2006). Surface proteins of gram-positive bacteria and how they get there. Annual Review of Microbiology, 60, 397–423.CrossRefGoogle Scholar
  61. 61.
    Nicolson, G. L. The Fluid—Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1838, 1451–1466 (2014).Google Scholar
  62. 62.
    Li, L., Shi, X., Guo, X., Li, H., & Xu, C. (2014). Ionic protein–lipid interaction at the plasma membrane: What can the charge do? Trends in Biochemical Sciences, 39, 130–140.CrossRefGoogle Scholar
  63. 63.
    Lombard, J. (2014). Once upon a time the cell membranes: 175 years of cell boundary research. Biology direct, 9, 1–35.CrossRefGoogle Scholar
  64. 64.
    Hu, Y., et al. (2007). Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles. Nano Letters, 7, 3056–3064.CrossRefGoogle Scholar
  65. 65.
    Sandhu, K. K., McIntosh, C. M., Simard, J. M., Smith, S. W., & Rotello, V. M. (2002). Gold nanoparticle-mediated transfection of mammalian cells. Bioconjugate Chemistry, 13, 3–6.CrossRefGoogle Scholar
  66. 66.
    Wolff, J. A., et al. (1990). Direct gene transfer into mouse muscle in vivo. Science, 247, 1465–1468.CrossRefGoogle Scholar
  67. 67.
    Liu, G., et al. (2003). Nanoparticles of compacted DNA transfect postmitotic cells. Journal of Biological Chemistry, 278, 32578–32586.CrossRefGoogle Scholar
  68. 68.
    Rojas-Chapana, J. A., Correa-Duarte, M. A., Ren, Z., Kempa, K., & Giersig, M. (2004). Enhanced introduction of gold nanoparticles into vital acidothiobacillus ferrooxidans by carbon nanotube-based microwave electroporation. Nano Letters, 4, 985–988.CrossRefGoogle Scholar
  69. 69.
    Tkachenko, A. G., et al. (2003). Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. Journal of the American Chemical Society, 125, 4700–4701.CrossRefGoogle Scholar
  70. 70.
    Pauling, L., & Corey, R. B. (1953). A proposed structure for the nucleic acids. Proceedings of the National Academy of Sciences, 39, 84–97.CrossRefGoogle Scholar
  71. 71.
    Csáki, A., Maubach, G., Born, D., Reichert, J., & Fritzsche, W. (2002). DNA-based molecular nanotechnology. Single Molecules, 3, 275–280.CrossRefGoogle Scholar
  72. 72.
    Prado-Gotor, R., & Grueso, E. (2011). A kinetic study of the interaction of DNA with gold nanoparticles: Mechanistic aspects of the interaction. Physical Chemistry Chemical Physics, 13, 1479–1489.CrossRefGoogle Scholar
  73. 73.
    Pershina, A. G., Sazonov, A., & Filimonov, V. D. (2014). Magnetic nanoparticles–DNA interactions: Design and applications of nanobiohybrid systems. Russian Chemical reviews, 83, 299.CrossRefGoogle Scholar
  74. 74.
    Shao, Q., et al. (2011). Electrochemical and spectroscopic studies on the conformational structure of hemoglobin assembled on gold nanoparticles. The Journal of Physical Chemistry B, 115, 8627–8637.CrossRefGoogle Scholar
  75. 75.
    Luheshi, L. M., & Dobson, C. M. (2009). Bridging the gap: From protein misfolding to protein misfolding diseases. FEBS Letters, 583, 2581–2586.CrossRefGoogle Scholar
  76. 76.
    Jahn, T. R., & Radford, S. E. (2005). The Yin and Yang of protein folding. FEBS Journal, 272, 5962–5970.CrossRefGoogle Scholar
  77. 77.
    Muntau, A. C., Leandro, J., Staudigl, M., Mayer, F., & Gersting, S. W. (2014). Innovative strategies to treat protein misfolding in inborn errors of metabolism: Pharmacological chaperones and proteostasis regulators. Journal of Inherited Metabolic Disease, 37, 505–523.CrossRefGoogle Scholar
  78. 78.
    Horwich, A. (2002). Protein aggregation in disease: A role for folding intermediates forming specific multimeric interactions. The Journal of Clinical Investigation, 110, 1221–1232.CrossRefGoogle Scholar
  79. 79.
    Bellotti, V., & Chiti, F. (2008). Amyloidogenesis in its biological environment: Challenging a fundamental issue in protein misfolding diseases. Current Opinion in Structural Biology, 18, 771–779.CrossRefGoogle Scholar
  80. 80.
    Jha, S., Sellin, D., Seidel, R., & Winter, R. (2009). Amyloidogenic propensities and conformational properties of ProIAPP and IAPP in the presence of lipid bilayer membranes. Journal of Molecular Biology, 389, 907–920.CrossRefGoogle Scholar
  81. 81.
    Xue, W. F., et al. (2009). Fibril fragmentation enhances amyloid cytotoxicity. Journal of Biological Chemistry, 284, 34272–34282.CrossRefGoogle Scholar
  82. 82.
    Antosova, A., et al. (2012). Anti-amyloidogenic activity of glutathione-covered gold nanoparticles. Materials Science and Engineering C, 32, 2529–2535.CrossRefGoogle Scholar
  83. 83.
    Gilman, S., et al. (2005). Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology, 64, 1553–1562.CrossRefGoogle Scholar
  84. 84.
    Rinne, J. O., et al. (2010). 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: A phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurology, 9, 363–372.CrossRefGoogle Scholar
  85. 85.
    Salloway, S., et al. (2009). A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology, 73, 2061–2070.CrossRefGoogle Scholar
  86. 86.
    Schnabel, J. (2011). Vaccines: Chasing the dream. Nature, 475, S18–S19.CrossRefGoogle Scholar
  87. 87.
    Velkova, A., Tatarek-Nossol, M., Andreetto, E., & Kapurniotu, A. (2008). Exploiting cross-amyloid interactions to inhibit protein aggregation but not function: Nanomolar affinity inhibition of insulin aggregation by an IAPP mimic. Angewandte Chemie International Edition, 47, 7114–7118.CrossRefGoogle Scholar
  88. 88.
    Gazova, Z., et al. (2008). Acridine derivatives inhibit lysozyme aggregation. European Biophysics Journal, 37, 1261–1270.CrossRefGoogle Scholar
  89. 89.
    Huggins, K. N., et al. (2011). Designed hairpin peptides interfere with amyloidogenesis pathways: Fibril formation and cytotoxicity inhibition, interception of the preamyloid state. Biochemistry, 50, 8202–8212.CrossRefGoogle Scholar
  90. 90.
    Bellova, A., et al. (2010). Effect of Fe3O4 magnetic nanoparticles on lysozyme amyloid aggregation. Nanotechnology, 21, 065103.CrossRefGoogle Scholar
  91. 91.
    Fu, Z., Luo, Y., Derreumaux, P., & Wei, G. (2009). Induced Beta-Barrel Formation of the Alzheimer’s Abeta25-35 Oligomers on Carbon Nanotube Surfaces: Implication for Amyloid Fibril Inhibition. Biophysical Journal, 97, 1795–1803.CrossRefGoogle Scholar
  92. 92.
    Rocha, S., et al. (2008). Influence of fluorinated and hydrogenated nanoparticles on the structure and fibrillogenesis of amyloid beta-peptide. Biophysical Chemistry, 137, 35–42.CrossRefGoogle Scholar
  93. 93.
    Moyano, D. F., & Rotello, V. M. (2011). Nano meets biology: Structure and function at the nanoparticle interface. Langmuir, 27, 10376–10385.CrossRefGoogle Scholar
  94. 94.
    Nel, A. E., et al. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 8, 543–557.CrossRefGoogle Scholar
  95. 95.
    Sigmund, W., Pyrgiotakis, G. & Daga, A. 11 Theory and Applications of Colloidal Processing. Chemical Processing of Ceramics, 269 (2005).Google Scholar
  96. 96.
    Inbaraj, B. S., Tsai, T.-Y. & Chen, B.-H. Synthesis, characterization and antibacterial activity of superparamagnetic nanoparticles modified with glycol chitosan. Science and Technology of Advanced Materials, (2016).Google Scholar
  97. 97.
    Dwivedi, S., et al. (2014). Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS ONE, 9, e111289.CrossRefGoogle Scholar
  98. 98.
    Jiang, W., Yang, K., Vachet, R. W., & Xing, B. (2010). Interaction between oxide nanoparticles and biomolecules of the bacterial cell envelope as examined by infrared spectroscopy. Langmuir, 26, 18071–18077.CrossRefGoogle Scholar
  99. 99.
    Adams, L. K., Lyon, D. Y., & Alvarez, P. J. (2006). Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research, 40, 3527–3532.CrossRefGoogle Scholar
  100. 100.
    Brayner, R., et al. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters, 6, 866–870.CrossRefGoogle Scholar
  101. 101.
    Zhang, S., Gao, H., & Bao, G. (2015). Physical principles of nanoparticle cellular endocytosis. ACS Nano, 9, 8655–8671.CrossRefGoogle Scholar
  102. 102.
    Decuzzi, P., & Ferrari, M. (2007). The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials, 28, 2915–2922.CrossRefGoogle Scholar
  103. 103.
    Pramanik, S., Chatterjee, S., Saha, A., Devi, P. S. & Suresh Kumar, G. (2016) Unraveling the Interaction of Silver Nanoparticles with Mammalian and Bacterial DNA. The Journal of Physical Chemistry B.Google Scholar
  104. 104.
    An, H., & Jin, B. (2012). Prospects of nanoparticle–DNA binding and its implications in medical biotechnology. Biotechnology Advances, 30, 1721–1732.CrossRefGoogle Scholar
  105. 105.
    Monopoli, M. P., Aberg, C., Salvati, A., & Dawson, K. A. (2012). Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotechnology, 7, 779–786.CrossRefGoogle Scholar
  106. 106.
    Chithrani, B. D., Ghazani, A. A., & Chan, W. C. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6, 662–668.CrossRefGoogle Scholar
  107. 107.
    De Jong, W. H., et al. (2008). Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 29, 1912–1919.CrossRefGoogle Scholar
  108. 108.
    Dobrovolskaia, M. A., Aggarwal, P., Hall, J. B., & McNeil, S. E. (2008). Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Molecular Pharmaceutics, 5, 487–495.CrossRefGoogle Scholar
  109. 109.
    McNeil, S. E. (2005). Nanotechnology for the biologist. Journal of Leukocyte Biology, 78, 585–594.CrossRefGoogle Scholar
  110. 110.
    Tomalia, D. A., Reyna, L. A., & Svenson, S. (2007). Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochemical Society Transactions, 35, 61–67.CrossRefGoogle Scholar
  111. 111.
    Tyrrell, D. A., Richardson, V. J. & Ryman, B. E. (1977). The effect of serum protein fractions on liposome-cell interactions in cultured cells and the perfused rat liver. Biochimica et Biophysica Acta (BBA)-General Subjects, 497, 469–480.Google Scholar
  112. 112.
    Kiwada, H., Miyajima, T., & Kato, Y. (1987). Studies on the uptake mechanism of liposomes by perfused rat liver. II. An indispensable factor for liver uptake in serum. Chemical & Pharmaceutical Bulletin, 35, 1189.CrossRefGoogle Scholar
  113. 113.
    Dutta, D., et al. (2007). Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicological Sciences, 100, 303–315.CrossRefGoogle Scholar
  114. 114.
    Lynch, I. (2007). Are there generic mechanisms governing interactions between nanoparticles and cells? Epitope mapping the outer layer of the protein-material interface. Physica A: Statistical Mechanics and its Applications, 373, 511–520.CrossRefGoogle Scholar
  115. 115.
    Aggarwal, P., Hall, J. B., McLeland, C. B., Dobrovolskaia, M. A., & McNeil, S. E. (2009). Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Advanced Drug Delivery Reviews, 61, 428–437.CrossRefGoogle Scholar
  116. 116.
    Dobrovolskaia, M. A., et al. (2009). Interaction of colloidal gold nanoparticles with human blood: Effects on particle size and analysis of plasma protein binding profiles. Nanomedicine, 5, 106–117.CrossRefGoogle Scholar
  117. 117.
    Goppert, T. M., & Muller, R. H. (2005). Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN). European Journal of Pharmaceutics and Biopharmaceutics, 60, 361–372.CrossRefGoogle Scholar
  118. 118.
    Kim, H. R., et al. (2007). Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2-DE. CE and Protein Lab-on-chip system. Electrophoresis, 28, 2252–2261.Google Scholar
  119. 119.
    Goppert, T. M., & Muller, R. H. (2005). Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: Comparison of plasma protein adsorption patterns. Journal of Drug Targeting, 13, 179–187.CrossRefGoogle Scholar
  120. 120.
    Lynch, I., & Dawson, K. A. (2008). Protein-nanoparticle interactions. Nano Today, 3, 40–47.CrossRefGoogle Scholar
  121. 121.
    Oberdorster, G., Ferin, J., Gelein, R., Soderholm, S. C., & Finkelstein, J. (1992). Role of the alveolar macrophage in lung injury: Studies with ultrafine particles. Environmental Health Perspectives, 97, 193–199.CrossRefGoogle Scholar
  122. 122.
    Donaldson, K., Li, X. Y., & MacNee, W. (1998). Ultrafine (nanometre) particle mediated lung injury. Journal of Aerosol Science, 29, 553–560.CrossRefGoogle Scholar
  123. 123.
    Brown, D. M., Wilson, M. R., MacNee, W., Stone, V., & Donaldson, K. (2001). Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicology and Applied Pharmacology, 175, 191–199.CrossRefGoogle Scholar
  124. 124.
    Adiseshaiah, P. P., Hall, J. B., & McNeil, S. E. (2009). Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2, 99–112.Google Scholar
  125. 125.
    Lynch, I., et al. (2007). The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Advances in Colloid and Interface Science, 134, 167–174.CrossRefGoogle Scholar
  126. 126.
    Calzolai, L., Franchini, F., Gilliland, D., & Rossi, F. (2010). Protein– Nanoparticle Interaction: Identification of the Ubiquitin-Gold Nanoparticle Interaction Site. Nano Letters, 10, 3101–3105.CrossRefGoogle Scholar
  127. 127.
    Lynch, I., Dawson, K. A. & Linse, S. Detecting cryptic epitopes created by nanoparticles. Science Signalling, 2006, pe14 (2006).Google Scholar
  128. 128.
    Shang, L., Wang, Y., Jiang, J., & Dong, S. (2007). pH-dependent protein conformational changes in albumin: Gold nanoparticle bioconjugates: A spectroscopic study. Langmuir, 23, 2714–2721.CrossRefGoogle Scholar
  129. 129.
    Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H., & Adibkia, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering C, 44, 278–284.CrossRefGoogle Scholar
  130. 130.
    Seil, J. T., & Webster, T. J. (2012). Antimicrobial applications of nanotechnology: Methods and literature. International Journal of Nanomedicine, 7, 2767.Google Scholar
  131. 131.
    Rasmussen, J. W., Martinez, E., Louka, P., & Wingett, D. G. (2010). Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert opinion on drug delivery, 7, 1063–1077.CrossRefGoogle Scholar
  132. 132.
    Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622–627.CrossRefGoogle Scholar
  133. 133.
    Zhang, Y., Chen, W., Wang, S., Liu, Y., & Pope, C. (2008). Phototoxicity of zinc oxide nanoparticle conjugatesin human ovarian cancer NIH: OVCAR-3 cells. Journal of Biomedical Nanotechnology, 4, 432–438.CrossRefGoogle Scholar
  134. 134.
    Punnoose, A., Kongara, M. R. & Wingett, D. (2012) Vol. 8, 187 638 (U.S. Patent).Google Scholar
  135. 135.
    Vinardell, M. P., & Mitjans, M. (2015). Antitumor Activities of Metal Oxide Nanoparticles. Nanomaterials, 5, 1004–1021.CrossRefGoogle Scholar
  136. 136.
    Shawkey, A. M., Rabeh, M. A., Abdulall, A. K., & Abdellatif, O. (2013). Green nanotechnology: Anticancer activity of silver nanoparticles using Citrullus colocynthis aqueous extracts. Advances in Life Science and Technology, 13, 60–70.Google Scholar
  137. 137.
    Shen, W., et al. (2008). ZnO—Poly (methyl methacrylate) Nanobeads for Enriching and Desalting Low-Abundant Proteins Followed by Directly MALDI-TOF MS Analysis. Analytical Chemistry, 80, 6758–6763.CrossRefGoogle Scholar
  138. 138.
    Dorfman, A., Parajuli, O., Kumar, N., & Hahm, J.-I. (2008). Novel telomeric repeat elongation assay performed on zinc oxide nanorod array supports. Journal of Nanoscience and Nanotechnology, 8, 410–415.CrossRefGoogle Scholar
  139. 139.
    Walter, S. (2002). Structure and function of the GroE chaperone. Cellular and Molecular Life Sciences CMLS, 59, 1589–1597.CrossRefGoogle Scholar
  140. 140.
    Young, J. C., Agashe, V. R., Siegers, K., & Hartl, F. U. (2004). Pathways of chaperone-mediated protein folding in the cytosol. Nature Reviews Molecular Cell Biology, 5, 781–791.CrossRefGoogle Scholar
  141. 141.
    Tandon, S., & Horowitz, P. (1986). Detergent-assisted refolding of guanidinium chloride-denatured rhodanese. The effect of lauryl maltoside. Journal of Biological Chemistry, 261, 15615–15618.Google Scholar
  142. 142.
    Karuppiah, N., & Sharma, A. (1995). Cyclodextrins as protein folding aids. Biochemical and Biophysical Research Communications, 211, 60–66.CrossRefGoogle Scholar
  143. 143.
    Rozema, D., & Gellman, S. H. (1995). Artificial chaperones: Protein refolding via sequential use of detergent and cyclodextrin. Journal of the American Chemical Society, 117, 2373–2374.CrossRefGoogle Scholar
  144. 144.
    Cleland, J. L., Hedgepeth, C., & Wang, D. (1992). Polyethylene glycol enhanced refolding of bovine carbonic anhydrase B. Reaction stoichiometry and refolding model. Journal of Biological Chemistry, 267, 13327–13334.Google Scholar
  145. 145.
    Cleland, J. L. & Wang, D. I. In ACS Symposium Series. 151–166 (Amer Chemical Soc 1155 16th St, NW, Washington, DC 20036).Google Scholar
  146. 146.
    Nomura, Y., Ikeda, M., Yamaguchi, N., Aoyama, Y., & Akiyoshi, K. (2003). Protein refolding assisted by self-assembled nanogels as novel artificial molecular chaperone. FEBS Letters, 553, 271–276.CrossRefGoogle Scholar
  147. 147.
    Colvin, V. L., & Kulinowski, K. M. (2007). Nanoparticles as catalysts for protein fibrillation. Proceedings of the National Academy of Sciences, 104, 8679–8680.CrossRefGoogle Scholar
  148. 148.
    Sear, R. P. (2007). Nucleation: Theory and applications to protein solutions and colloidal suspensions. Journal of Physics: Condensed Matter, 19, 033101.Google Scholar
  149. 149.
    Auer, S., Trovato, A., & Vendruscolo, M. (2009). A condensation-ordering mechanism in nanoparticle-catalyzed peptide aggregation. PLoS Computational Biology, 5, e1000458.CrossRefGoogle Scholar
  150. 150.
    Zaman, M., Ahmad, E., Qadeer, A., Rabbani, G., & Khan, R. H. (2014). Nanoparticles in relation to peptide and protein aggregation. International Journal of Nanomedicine, 9, 899.Google Scholar
  151. 151.
    Wu, W. H., et al. (2008). TiO2 nanoparticles promote beta-amyloid fibrillation in vitro. Biochemical and Biophysical Research Communications, 373, 315–318.CrossRefGoogle Scholar
  152. 152.
    Linse, S., et al. (2007). Nucleation of protein fibrillation by nanoparticles. Proceedings of the National Academy of Sciences, 104, 8691–8696.CrossRefGoogle Scholar
  153. 153.
    De, M. & Rotello, V. M. (2008). Synthetic “chaperones”: Nanoparticle-mediated refolding of thermally denatured proteins. Chemical communications (Cambridge, England), 14, 3504.Google Scholar
  154. 154.
    Rozema, D., & Gellman, S. H. (1996). Artificial chaperone-assisted refolding of denatured-reduced lysozyme: Modulation of the competition between renaturation and aggregation. Biochemistry, 35, 15760–15771.CrossRefGoogle Scholar
  155. 155.
    Sivakama Sundari, C., Raman, B. & Balasubramanian, D. Artificial chaperoning of insulin, human carbonic anhydrase and hen egg lysozyme using linear dextrin chains–a sweet route to the native state of globular proteins. FEBS letters, 443, 215–219 (1999).Google Scholar
  156. 156.
    You, C. C., et al. (2007). Detection and identification of proteins using nanoparticle-fluorescent polymer ‘chemical nose’ sensors. Nature Nanotechnology, 2, 318–323.CrossRefGoogle Scholar
  157. 157.
    Shemetov, A. A., Nabiev, I., & Sukhanova, A. (2012). Molecular interaction of proteins and peptides with nanoparticles. ACS Nano, 6, 4585–4602.CrossRefGoogle Scholar
  158. 158.
    Pihlasalo, S., Kirjavainen, J., Hänninen, P., & Härmä, H. (2011). High sensitivity luminescence nanoparticle assay for the detection of protein aggregation. Analytical Chemistry, 83, 1163–1166.CrossRefGoogle Scholar
  159. 159.
    Karran, E., Mercken, M., & De Strooper, B. (2011). The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nature Reviews Drug Discovery, 10, 698–712.CrossRefGoogle Scholar
  160. 160.
    Pillay, S., et al. (2009). Design, biometric simulation and optimization of a nano-enabled scaffold device for enhanced delivery of dopamine to the brain. International Journal of Pharmaceutics, 382, 277–290.CrossRefGoogle Scholar
  161. 161.
    Trapani, A., et al. (2011). Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. International Journal of Pharmaceutics, 419, 296–307.CrossRefGoogle Scholar
  162. 162.
    Md, S., et al. (2013). Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: Pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. European Journal of Pharmaceutical Sciences, 48, 393–405.CrossRefGoogle Scholar
  163. 163.
    Yang, X., et al. (2012). Controlled-release levodopa methyl ester/benserazide-loaded nanoparticles ameliorate levodopa-induced dyskinesia in rats. International Journal of Nanomedicine, 7, 2077.Google Scholar
  164. 164.
    Azeem, A., et al. (2012). Oil based nanocarrier system for transdermal delivery of ropinirole: A mechanistic, pharmacokinetic and biochemical investigation. International Journal of Pharmaceutics, 422, 436–444.CrossRefGoogle Scholar
  165. 165.
    Ikeda, K., Okada, T., Sawada, S.-I., Akiyoshi, K., & Matsuzaki, K. (2006). Inhibition of the formation of amyloid b-protein fibrils using biocompatible nanogels as artificial chaperones. FEBS Letters, 580, 6587–6595.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.National Institute of Technology RourkelaRourkelaIndia

Personalised recommendations