Skip to main content

Research on Compressed Sensing Signal Reconstruction Algorithm Based on Smooth Graduation l 1 Norm

  • Conference paper
  • First Online:
Advanced Hybrid Information Processing (ADHIP 2017)

Abstract

The compressed signal reconstruction of the sensing node has been a hot research topic for the mobile Internet. At present, some reconstruction algorithms finally adopt the minimum l 1 norm optimization algorithm. In order to solve the roughness, poor derivability and other defects of the minimum l 1 norm function, this paper constructs the smooth graduation algorithm based on l 1 norm, proves the monotonicity of the function and the sequence convergence of the optimal solution, and finally verifies the effectiveness of the function through examples. In the simulation experiment, the signal reconstruction algorithm and the classical OMP algorithm were compared, and the results show that it receives better reconstruction effects, small error and high precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y.: A survey on sensor networks. IEEE Commun. Mag. 40(8), 923–926 (2002)

    Article  Google Scholar 

  2. Peng, G.: Wireless sensor network as a new ground remote sensing technology for environmental monitoring. J. Remote Sens. 11(4), 545–551 (2007)

    Google Scholar 

  3. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(4), 612–616 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Wang, Q.: Compressed sensing for data collection in wireless sensor network. J. Transduct. Technol. 27(11), 1562–1567 (2014)

    Google Scholar 

  5. Dai, Q.-H., Fu, C.-J., Ji, X.-Y.: Research on compressed sensing. Chin. J. Comput. 54(3), 425–434 (2011)

    Article  MathSciNet  Google Scholar 

  6. Chen, S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kim, S., Koh, K., Lustig, M., et al.: A method for large-scale l1-regularizd least squares problems with applications in signal processing and statistic. IEEE J. Sel. Top. Sig. Process. 1(4), 606–617 (2007)

    Article  Google Scholar 

  8. Blatt, D., Hero, A.O.: Energy-based sensor network source localization via projection onto convex sets. IEEE Trans. Sig. Process. 54(9), 3614–3619 (2006)

    Article  MATH  Google Scholar 

  9. Choi, S.H., Harney, D.A., Book, N.L.: A robust path tracking algorithm for homotopy continuation. Comput. Chem. Eng. 20, 647–655 (1996)

    Article  Google Scholar 

  10. Wright, S.J.: Primal-dual interior methods. SIAM (1997)

    Google Scholar 

  11. Pati, Y., Rezaifar, R., Krishnaprasad, P.: Orthogonal matching pursuit: recursive function approximation with application to wavelet decomposition. In: 1993 Conference Record of the 27th Asilomar Conference on IEEE Signals, Systems and Computers, pp. 40–44 (1993)

    Google Scholar 

  12. Tropp, J., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Donoho, D.L., Tsaig, Y., Drori, I., et al.: Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans. Inf. Theory 58(2), 1094–1121 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, J.-h., Huang, Z.-t., Zhou, Y.-y., Wang, F.-h.: Robust sparse recovery based on approximate L0 norm. Acta Electronica Sinica 40(6), 1185–1189 (2012)

    Google Scholar 

  15. Feng, J., Zhang, G., Wen, F.: Improved sparse signal reconstruction algorithm based on SLO Norm. J. Data Acquisit. Process. 31(1), 178–183 (2016)

    Google Scholar 

  16. Ma, S.-x., Zhang, M.-h., Meng, X.: Fast smoothed L0 norm algorithm for compressive sensing reconstruction. Sci. Technol. Eng. 13(9), 2377–2381 (2013)

    Google Scholar 

  17. He, Y.-b., Bi, D.-y., Ma, S.-p., Lu, L., Yue, Y.-s.: Signal reconstruction with probability inference and reweighted iterative L1 norm. J. Optoelectr. Laser 23(3), 579–587 (2012)

    Google Scholar 

  18. Chen, S.B., Donoho, D.L., Saunders, M.A.: Atmoic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Donoho, D.L., Elad, M., Temlyakov, V.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52(1), 6–18 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Baraniuk, R., Steeghs, P.: Compressive radar imaging. In: Proceedings of Radar Conference, pp. 128–133. IEEE, Washington D.C. (2007)

    Google Scholar 

  21. Gribonval, R., Nielsen, M.: Sparse representation in unions of bases. IEEE Trans. Inf. Theory 49(12), 3320–3325 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zelinski, A., Wald, L.L., Setsompop, K., et al.: Sparsity-enforced slice-selective MRI RF excitation pulse design. IEEE Trans. Med. Imaging 27(9), 1213–1229 (2008)

    Article  Google Scholar 

  23. Li, X.S., Fang, S.C.: On the entropic regularization method for solving max-min problems with application. Matlietnatical Methods Oper. Res. 46, 119–130 (1997)

    Article  MATH  Google Scholar 

  24. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogoinal) dictionaries via L1 minimization. Proc. Natl. Acad. Sci. U.S.A. 100(5), 2197–2202 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, X. (2018). Research on Compressed Sensing Signal Reconstruction Algorithm Based on Smooth Graduation l 1 Norm. In: Sun, G., Liu, S. (eds) Advanced Hybrid Information Processing. ADHIP 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-73317-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73317-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73316-6

  • Online ISBN: 978-3-319-73317-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics