Skip to main content

Transport and Deposition of Particles in Airway Trees

  • Chapter
  • First Online:
  • 521 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

Atmospheric exposure to ambient particulate matter may affect pulmonary function, resulting in adverse health effects. Aerosol particles are also widely used in treatment of obstructive airway diseases, such as asthma. This chapter is completely devoted to particle transport through airways. It covers the physical characteristics of particles, the deposition mechanisms, and physiological factors (breathing patterns) with relevance to particle deposition in the respiratory tree.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ACGIH (2001) Documentation of the threshold limit values and biological exposure indices, 7th edn. In: American Conference of Governmental Industrial Hygienists, Ohio

    Google Scholar 

  • Asgharian B, Hofmann W, Bergmann R (2001) Particle deposition in a multiple-path model of the human lung. Aerosol Sci Tech 34:332–339

    Article  Google Scholar 

  • Balik G, Reis AH, Aydin M, Miguel AF (2008) Behaviour of submicrometer particles in periodic alveolar airflows. Eur J Appl Physiol 102:677–683

    Article  Google Scholar 

  • Bejan A, Dincer I, Lorente S, Miguel AF, Reis AH (2004) Porous and complex flow structures in modern technologies. Springer, New York

    Book  Google Scholar 

  • Di Y, Fei M, Sun X, Yang TC (2010) Modeling of the human bronchial tree and simulation of internal airflow: a review. In: Li K, Fei M, Jia L, Irwin GW (eds) Life system modeling and intelligent computing. Springer, New York, pp 456–465

    Chapter  Google Scholar 

  • Fishler R, Hofemeier P, Etzion Y, Dubowski Y, Sznitman J (2015) Particle dynamics and deposition in true-scale pulmonary acinar models. Sci Rep 5:14071

    Article  Google Scholar 

  • Harris RL, Fraser DA (1976) A model for deposition of fibers in the human respiratory system. Am Ind Hyg Assoc J 37:73–89

    Article  Google Scholar 

  • Hofmann W (2011) Modelling inhaled particle deposition in the human lung—a review. J Aerosol Sci 42:693–724

    Article  Google Scholar 

  • ICRP (1994) Human respiratory tract model for radiological protection. A report of a task group of the international commission on radiological protection. Annals of the ICRP 24:1–482

    Google Scholar 

  • Islam N, Cleary MJ (2012) Developing an efficient and reliable dry powder inhaler for pulmonary drug delivery—a review for multidisciplinary researchers. Med Eng Phys 34:409–427

    Article  Google Scholar 

  • Kim CS, Iglesias AJ (1989) Deposition of inhaled particles in bifurcating airway models: I inspiratory deposition. J Aerosol Med 2:1–14

    Article  Google Scholar 

  • Kim CS (2009) Deposition of aerosol particles in human lungs: in vivo measurement and modelling. Biomarkers 4:54–58

    Article  Google Scholar 

  • Kleinstreuer C, Zhang Z (2010) Airflow and particle transport in the human respiratory system. Ann Rev Fluid Mec 42:301–334

    Article  Google Scholar 

  • Kleinstreuer C, Feng Y (2013) Lung deposition analyses of inhaled toxic aerosols in conventional and less harmful cigarette smoke: a review. Int J Environ Res Pub Health 10:4454–4485

    Article  Google Scholar 

  • Koeppen BM, Stanton BA (2010) Berne & Levy physiology. Elsevier, Mosby

    Google Scholar 

  • Lee DY, Lee JW (2003) Characteristics of particle transport in an expanding or contracting alveolated tube. J Aerosol Sci 34:1193–1215

    Article  Google Scholar 

  • Levitzky MA (2013) Pulmonary physiology, 8th edn. McGraw-Hill, New York

    Google Scholar 

  • Martonen TB (1993) Mathematical model for selective deposition of inhaled pharmaceuticals. J Pharm Sci 82:1191–1199

    Article  Google Scholar 

  • Maxey RM, Riley JJ (1983) Equation of motion for a small rigid sphere in a non-uniform flow. Phys Fluids 25:883–889

    Article  Google Scholar 

  • Miguel AF (2012) Lungs as a natural porous media: architecture, airflow characteristics and transport of suspended particles. In: Delgado J (ed) Heat and mass transfer in porous media. Advanced Structured Materials Series, vol 13. Springer, Berlin, pp 115–137

    Google Scholar 

  • Miguel AF (2017) Penetration of inhaled aerosols in the bronchial tree. Med Eng Phys 44:25–31

    Article  Google Scholar 

  • Miguel AF, Aydin M, Reis AH (2005) Indoor deposition and forced resuspension of respirable particles. Indoor Built Environ 14:391–396

    Article  Google Scholar 

  • Roberts SM, James RC, Williams PL (2015) Principles of toxicology: environmental and industrial applications, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Rostami AA (2009) Computational modeling of aerosol deposition in respiratory tract: a review. Inhal Toxicol 21:262–290

    Article  Google Scholar 

  • Schlesinger RB (1995) Comparative deposition of inhaled aerosols in experimental animals and humans: a review. J Toxicol Environ Health 15:197–214

    Article  Google Scholar 

  • Sera T, Uesugi K, Yagi N, Yokota H (2015) Numerical simulation of airflow and microparticle deposition in a synchrotron micro-CT-based pulmonary acinus model. Comput Methods Biomech Biomed Engin 18:1427–1435

    Article  Google Scholar 

  • Wang YB, Watts AB, Peters JI, Williams ROIII (2014) The impact of pulmonary diseases on the fate of inhaled medicines—a review. Int J Pharm 461:112–128

    Article  Google Scholar 

  • WHO (2005) Air quality guidelines, global update 2005. In: Particulate matter, ozone, nitrogen dioxide and sulfur dioxide. World Health Organization, Genève

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miguel, A.F., Rocha, L.A.O. (2018). Transport and Deposition of Particles in Airway Trees. In: Tree-Shaped Fluid Flow and Heat Transfer. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-73260-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73260-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73259-6

  • Online ISBN: 978-3-319-73260-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics