Skip to main content

Aquaculture and the Environment: Towards Sustainability

  • Chapter
  • First Online:

Abstract

The contribution of aquaculture to global fish production has increased in the last twenty years with the production level reaching 73.8 million tonnes in 2014, about 44% of total fish production. Asian and African aquaculture production accounts for a greater proportion of growth in aquaculture output. Aquaculture contributes to livelihoods as well as revenue in several countries even though the economic conditions have been inclement and environmental problems persist. Aquaculture will have to continue to grow to meet the increasing demand for fish. But growth would not be sustainable if the planning and management are not improved significantly. There is a need for local, national and international planning and management to cater for environmental, social, economic, health and animal welfare concerns. These form the core of best management practice in aquaculture. Aquaculture can impact on the environment negatively considering genetics , water quality, ecology , health and resource use while the environment affects aquaculture on three fronts: the cultured species, culture system and overall feasibility . These put together will demand some management effort in order to ensure sustainability of aquaculture depending on the application of site selection and carrying capacity assessment, aquaculture hazard and risk analysis, ecosystem ‐based approach to aquaculture, aquaculture governance and planning, and aquaculture certification and standards. These are discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ADB (1995) Governance: sound development management. Asian Development Bank, Manila

    Google Scholar 

  • Aguilar-Manjarrez J, Kapetsky J, Soto D (2010) Status and potential of spatial planning tools, decision-making and modelling in implementing the ecosystem approach to aquaculture. FAO, Rome

    Google Scholar 

  • Ahmed N, Glaser M (2016) Coastal aquaculture, mangrove deforestation and blue carbon emissions: is REDD+ a solution? Mar Policy 66:58–66. https://doi.org/10.1016/j.marpol.2016.01.011

    Article  Google Scholar 

  • Ahmed N, Troell M (2010) Fishing for prawn larvae in Bangladesh: an important coastal livelihood causing negative effects on the environment. Ambio 39(1):20–29. https://doi.org/10.1007/s13280-009-0002-y

    Article  Google Scholar 

  • Alavaisha E, Mangora MM (2016) Carbon stocks in the small estuarine mangroves of Geza and Mtimbwani, Tanga, Tanzania. Int J For Res 2016:11. https://doi.org/10.1155/2016/2068283

    Google Scholar 

  • Anh PT, Kroeze C, Bush SR, Mol APJ (2010) Water pollution by Pangasius production in the Mekong Delta, Vietnam: causes and options for control. Aquac Res 42(1):108–128. https://doi.org/10.1111/j.1365-2109.2010.02578.x

    Article  CAS  Google Scholar 

  • Anka IZ, Faruk MAR, Hasan MM, Azad MAK (2013) Environmental issues of emerging pangas (Pangasianodon hypophthalmus) farming in Bangladesh. Prog Agric 24(1–2):159–170

    Google Scholar 

  • Antunes A, Apostolidis A, Berrebi P, Duguid A, Ferguson A, Garcia-Marin JL, Guyomard R, Hansen MM, Hindar K, Largiader C, Martinez P, Nielsen EE, Palm S, Ruzzante D, Ryman N, Triantaphyllidis C (1999) Conservation genetic managment of brown trout (Salmo trutta) in Europe. Report by the concerted action on identification, managment and exploitation of genetic resources in the Brown Trout (Salmo trutta) («TROUT CONCERT»; EU FAIR CT97–3882)

    Google Scholar 

  • Arthur JR (2008) General principles of the risk analysis process and its application to aquaculture. In: Bondad-Reantaso MG, Arthur JR, Subasinghe RP (eds) FAO Fisher ed, Rome, pp 3–8

    Google Scholar 

  • Ataguba GA, Kamble MT, Okayi GR, Chavan BR (2014) An overview and assessment of two wetlands in Eastern Thailand: Kung krabaen bay and welu wetlands in chanthaburi province. Int J Agric Environ Biotechnol 8(1):205–213. https://doi.org/10.5958/2230-732x.2015.00026.1

    Article  Google Scholar 

  • Ataguba GA, Okomoda VT, Unde ES (2013) Efficacy of copper sulphate as a prophylactic agent for fungal infection on egg, and its effect on hatching and early growth of Clarias gariepinus (Burchell 1822). Asian Fish Sci 26:156–166

    Google Scholar 

  • Aven T (2012) Foundations of risk analysis. Wiley, West Sussex

    Book  Google Scholar 

  • Axler RP, Tikkanen C, Henneck J, Schuldt J, McDonald ME (1997) Characteristics of effluent and sludge from two commercial rainbow trout farms in Minnesota. Prog Fish Cultur 2:161–172. https://doi.org/10.1577/1548-8640(1997)059

    Article  Google Scholar 

  • Balkhausen O, Banse M (2005) Modelling of Land use and land markets in partial and general equilibrium models: the current state

    Google Scholar 

  • Barrington K, Chopin T, Robinson S (2009) Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. In: Soto D (ed) FAO Fisheries and Aquaculture technical paper. No. 529, Rome, pp 7–46

    Google Scholar 

  • Baskett ML, Burgess SC, Waples RS (2013) Assessing strategies to minimize unintended fitness consequences of aquaculture on wild populations. Evol Appl 6(7):1090–1108. https://doi.org/10.1111/eva.12089

    Article  Google Scholar 

  • Beach RH, Viator CL (2008) The economics of aquaculture insurance: an overview of the U.S. pilot insurance program for cultivated clams. Aquac Econom Manag 12(1):25–38. https://doi.org/10.1080/13657300801959613

    Article  Google Scholar 

  • Bell JD, Bartley DM, Lorenzen K, Loneragan NR (2006) Restocking and stock enhancement of coastal fisheries: potential, problems and progress. Fish Res 80(1):1–8. https://doi.org/10.1016/j.fishres.2006.03.008

    Article  Google Scholar 

  • Beveridge M (2008) Cage aquaculture. In: Fishing news books. Wiley, NJ

    Google Scholar 

  • Beveridge MCM, Phillips MJ (1990) Environmental impact of tropical inland aquaculture. In: Environment and third world aquaculture development, Bellagio

    Google Scholar 

  • Bevir M (2012) Governance: a very short introduction. In: Very short introductions. OUP Oxford

    Google Scholar 

  • Bianchi TS, DiMarco SF, Cowan JH, Hetland RD, Chapman P, Day JW, Allison MA (2010) The science of hypoxia in the northern Gulf of Mexico: a review. Sci Total Environ 408(7):1471–1484. https://doi.org/10.1016/j.scitotenv.2009.11.047

    Article  CAS  Google Scholar 

  • Bondad-Reantaso MG, Arthur JR (2008) Pathogen risk analysis for aquaculture production. In: Bondad-Reantaso MG, Arthur JR, Subasinghe RP (eds) Understanding and applying risk analysis in aquaculture. FAO Fisheries and Aquaculture technical paper, No. 519. FAO, Rome, pp 27–46

    Google Scholar 

  • Bondad-Reantaso MG, Lovell ER, Arthur JR, Hurwood D, Mather PB (2005) Pathogen and ecological risk analysis for the introduction of Blue Shrimp, Litopenaeus stylirostris, from Brunei Darussalam to Fiji. Secretariat of the Pacific Community, Noumea, New Caledonia

    Google Scholar 

  • Bosma R, Anh PT, Potting J (2011) Life cycle assessment of intensive striped catfish farming in the Mekong Delta for screening hotspots as input to environmental policy and research agenda. Int J Life Cycle Assess 16(9):903–915. https://doi.org/10.1007/s11367-011-0324-4

    Article  Google Scholar 

  • Boyd CE (2012) Bottom soils, sediment, and pond aquaculture. Springer, US

    Google Scholar 

  • Boyd CE, Massaut L (1999) Risks associated with the use of chemicals in pond aquaculture. Aquacult Eng 20(2):113–132. https://doi.org/10.1016/S0144-8609(99)00010-2

    Article  Google Scholar 

  • Boyd CE, McNevin A (2014) Aquaculture, resource use, and the environment. Willey, New Jersey

    Google Scholar 

  • Boyd CE, Queiroz J, Lee J, Rowan M, Whitis GN, Gross A (2000) Environmental assessment of channel catfish Ictalurus punctatus farming in Alabama. J World Aquac Soc 31(4):511–544

    Article  Google Scholar 

  • Britton JR, Orsi ML (2012) Non-native fish in aquaculture and sport fishing in Brazil: economic benefits versus risks to fish diversity in the upper River Paraná Basin. Rev Fish Biol Fisheries 22(3):555–565. https://doi.org/10.1007/s11160-012-9254-x

    Article  Google Scholar 

  • Britz W, Verburg PH, Leip A (2011) Modelling of land cover and agricultural change in Europe: combining the CLUE and CAPRI-spat approaches. Agr Ecosyst Environ 142(1–2):40–50. https://doi.org/10.1016/j.agee.2010.03.008

    Article  Google Scholar 

  • Brun E (2013) Risk analysis in aquaculture. OIE

    Google Scholar 

  • Burrows D, Murray G, McGreer E (2010) Aquaculture and the ecosystem—based approach (EBA): concepts, case studies and lessons learned, pp 1–46

    Google Scholar 

  • Butterworth A (2010) Integrated multi-trophic aquaculture systems incorporating abalone and seaweeds, vol 0914

    Google Scholar 

  • Byron C, Link J, Costa-Pierce B, Bengtson D (2011) Calculating ecological carrying capacity of shellfish aquaculture using mass-balance modeling: Narragansett Bay, Rhode Island. Ecol Model 222(10):1743–1755. https://doi.org/10.1016/j.ecolmodel.2011.03.010

    Article  Google Scholar 

  • Byron CJ, Jin D, Dalton TM (2014) A social-ecological system (SES) that integrates carrying capacity for the sustainable management of bivalve aquaculture, pp 5–6

    Google Scholar 

  • Calvert S (2016) Maryland marine police crack down on oyster poachers. Wall Street J. Dow Jones & Company

    Google Scholar 

  • Cappello T, Mauceri A, Corsaro C, Maisano M, Parrino V, Lo Paro G, Messina G, Fasulo S (2013) Impact of environmental pollution on caged mussels Mytilus galloprovincialis using NMR-based metabolomics. Mar Pollut Bull 77(1–2):132–139. https://doi.org/10.1016/j.marpolbul.2013.10.019

    Article  CAS  Google Scholar 

  • Carver SJ (1991) Integrating multi-criteria evaluation with geographical information systems. Int J Geogr Inf Syst 5(3):321–339. https://doi.org/10.1080/02693799108927858

    Article  Google Scholar 

  • Chen J, Huang C, Xu H, Chen Z, Xu P, Yan X, Wang Y, Liu J (2008) Marine fish cage culture in China. In: Lovatelli A, Phillips MJ, Arthur JR, Yamamoto K (eds), vol 11. FAO, Rome, pp 285–299

    Google Scholar 

  • Chorley RJ, Haggett P (2013) Socio-economic models in geography (Routledge revivals). Routledge, Routledge Revivals, London

    Google Scholar 

  • Chowdhury MA, Khairun Y, Salequzzaman M, Rahman MM (2011) Effect of combined shrimp and rice farming on water and soil quality in Bangladesh. Aquacult Int 19(6):1193–1206. https://doi.org/10.1007/s10499-011-9433-0

    Article  CAS  Google Scholar 

  • Christensen V, Walters CJ (2004) Ecopath with ecosim: methods, capabilities and limitations. Ecol Model 172(2–4):109–139. https://doi.org/10.1016/j.ecolmodel.2003.09.003

  • Chuenpagdee R, Kooiman J, Pullin RSV (2008) Assessing governability in capture fisheries, aquaculture and coastal zones. J Transdiscipl Environ Stud 7(1):1–20

    Google Scholar 

  • CIG (2016) Defining governance. http://iog.ca/defining-governance/. Accessed 24 May 2016

  • Clark JL, Weldon RN, Adams CM, Wirth FF (2010) Risk assessment of a shrimp aquaculture investment in Florida. Aquac Econom Manag 14(4):332–357. https://doi.org/10.1080/13657305.2010.526023

    Article  Google Scholar 

  • Colbourne DB, Allen JH (2000) Observations on motions and loads in aquaculture cages from full scale and model scale measurements. Aquacult Eng 24(2):129–148. https://doi.org/10.1016/S0144-8609(00)00069-8

    Article  Google Scholar 

  • Corsin F, Funge-Smith S, Jesper C (2007) A qualitative assessment of standards and certification schemes applicable to aquaculture in the Asia–Pacific region. FAO, Bangkok

    Google Scholar 

  • Coutant CC (2013) Thermal Effects on fish ecology. Taylor & Francis, UK, pp 1167–1172 SE. https://doi.org/10.1081/E-EESE6-120048567

  • Cowx IG, Nunn AD, Harvey JP, Noble RAA (2012) Guidelines for stocking of fish within designated natural heritage sites. Scottish Natural Heritage Commissioned Report No. 513

    Google Scholar 

  • Craig RK (2002) The other side of sustainable aquaculture: mariculture and nonpoint source pollution. Washington Univ J Law Policy 9(January):163–207

    Google Scholar 

  • Crawford C (2001) Environmental risk assessment of shellfish farming in Tasmania. TAFI Marine Research Laboratories, Taroona, Tasmania

    Google Scholar 

  • Crawley F, Tyler B, Centre EPS (2003) Hazard identification methods. Institution of Chemical Engineers

    Google Scholar 

  • Cui Y, Guan CT, Wan R, Huang B, Li J (2013) Numerical simulation of a flatfish cage system in waves and currents. Aquacult Eng 56:26–33. https://doi.org/10.1016/j.aquaeng.2013.04.001

    Article  Google Scholar 

  • da Costa KGa, Nalesso RC (2006) Effects of mussel farming on macrobenthic community structure in Southeastern Brazil. Aquaculture 258(1–4):655–663. https://doi.org/10.1016/j.aquaculture.2006.04.023

  • Dalsgaard JPT, Lightfoot C, Christensen V (1995) Towards quantification of ecological sustainability in farming systems analysis. Ecol Eng 4(3):181–189. https://doi.org/10.1016/0925-8574(94)00057-C

    Article  Google Scholar 

  • Dapueto G, Massa F, Costa S, Cimoli L, Olivari E, Chiantore M, Federici B, Povero P (2015) A spatial multi-criteria evaluation for site selection of offshore marine fish farm in the Ligurian Sea, Italy. Ocean Coast Manag 116:64–77. https://doi.org/10.1016/j.ocecoaman.2015.06.030

    Article  Google Scholar 

  • Davis DA (2015) Feed and feeding practices in aquaculture. Woodhead Publishing Series in Food Science, Technology and Nutrition. Elsevier Science

    Google Scholar 

  • De Silva SS, Ingram BA, Nguyen PT, Bui TM, Gooley GJ, Turchini GM (2010) Estimation of nitrogen and phosphorus in effluent from the striped catfish farming sector in the Mekong Delta, Vietnam. Ambio 39(7):504–514. https://doi.org/10.1007/s13280-010-0072-x

    Article  CAS  Google Scholar 

  • DeCew J, Tsukrov I, Risso A, Swift MR, Celikkol B (2010) Modeling of dynamic behavior of a single-point moored submersible fish cage under currents. Aquacult Eng 43(2):38–45. https://doi.org/10.1016/j.aquaeng.2010.05.002

    Article  Google Scholar 

  • Diggles BK, Arthur JR (2010) Pathogen risk analysis for aquatic animals: experiences from nine case studies. In: Bondad-Reantaso MG, Jones JB, Corsin F, Aoki T (eds) The seventh symposium on diseases in asian aquaculture, Taipei, Taiwan 2008. Fish Health Section, Asian Fisheries Society, Selangor, Malaysia, pp 271–290

    Google Scholar 

  • Dominguez LM, Martín JMV (2004) Aquaculture environmental impact assessment. In: Popov V, Itoh H, Brebbia CA, Kungolos S (eds). WIT Press, pp 321–333

    Google Scholar 

  • Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nature Geosci 4 (5):293–297. http://www.nature.com/ngeo/journal/v4/n5/abs/ngeo1123.html#supplementary-information

  • Dosdat A (2009) Environment impact of aquaculture, Fisheries ed. EOLSS Publishers

    Google Scholar 

  • ECASA (2008) Ecosystem approach for sustainable aquaculture executive summary final activity report STREP. In: Sixth framework programme priority: integrating and strengthening the European research area. Scottish Association for Marine Science

    Google Scholar 

  • Echols KR, Meadows JC, Orazio CE (2009) Pollution of aquatic ecosystems II: hydrocarbons, synthetic organics, radionuclides, heavy metals, acids, and thermal pollution. In: Encyclopedia inland waters, pp 120–128. https://doi.org/10.1016/B978-012370626-3.00223-4

  • Edwards P (2002) Aquaculture for poverty alleviation and food security. Aquacult Asia VII(2):53–56

    Google Scholar 

  • Eldrandaly K (2013) Developing a GIS-based MCE site selection tool in arcGIS using COM technology. Int Arab J Inf Technol 10 (3)

    Google Scholar 

  • Emerson C (1999) Aquaculture impacts on the environment. Cambridge Scientific Abstracts

    Google Scholar 

  • Ertor I, Ortega-Cerda M (2015) Political lessons from early warnings: marine finfish aquaculture conflicts in Europe. Mar Policy 51:202–210. https://doi.org/10.1016/j.marpol.2014.07.018

    Article  Google Scholar 

  • Espinosa M, Gocht A, Heckelei T, Paloma SGY (2016) Incorporating farm structural change in models assessing the common agricultural policy: an application in the CAPRI farm type model. J Policy Model. https://doi.org/10.1016/j.jpolmod.2016.03.005

    Google Scholar 

  • Estrada GCD, Soares MLG (2017) Global patterns of aboveground carbon stock and sequestration in mangroves. An Acad Bras Ciênc 89:973–989

    Article  Google Scholar 

  • Ezekiel EN, Abowei JFN, Ezekiel EF (2011) Hazard and risk analysis in culture fisheries. Res J Appl Sci Eng Technol 3(10):1108–1117

    Google Scholar 

  • Fabi G, Manoukian S, Spagnolo A (2009) Impact of an open-sea suspended mussel culture on macrobenthic community (Western Adriatic Sea). Aquaculture 289(1–2):54–63. https://doi.org/10.1016/j.aquaculture.2008.12.026

    Article  Google Scholar 

  • FAO (2007a) The state of world fisheries and aquaculture 2006. Fisheries and Aquaculture Department, FAO, Rome

    Google Scholar 

  • FAO (2007b) The world’s mangroves 1980–2005, vol 153. FAO, Rome. ISBN: 978-92-5-105856-5

    Google Scholar 

  • FAO (2008) Report of the expert consultation on improving planning and policy

    Google Scholar 

  • FAO (2009) The state of world fisheries and aquaculture 2008. Fisheries and Aquaculture Department, FAO, Rome

    Google Scholar 

  • FAO (2010) Aquaculture development 4. In: Ecosystem approach to aquaculture, vol 5, suppl 4. Rome. https://doi.org/10.1017/cbo9781107415324.004

  • FAO (2011a) The state of the world’s land and water resources for food and agriculture: managing systems at risk. FAO/Earthscan, Rome

    Google Scholar 

  • FAO (2011b) Technical guidelines on aquaculture certification. Food and Agriculture Organisation of the United Nations

    Google Scholar 

  • FAO (2012) The state of world fisheries and aquaculture 2012. Fisheries and Aquaculture Department, FAO, Rome

    Google Scholar 

  • FAO (2014) The state of world fisheries and aquaculture: opportunities and challenges. FAO, Rome

    Google Scholar 

  • FAO (2016) The state of world fisheries and aquaculture: contributing to food security and nutrition for all. Fisheries and Aquaculture Department, FAO, Rome

    Google Scholar 

  • Ferreira JG, Hawkins AJS, Monteiro P, Moore H, Service M, Pascoe PL, Ramos L, Sequeira A (2008) Integrated assessment of ecosystem-scale carrying capacity in shellfish growing areas. Aquaculture 275(1–4):138–151. https://doi.org/10.1016/j.aquaculture.2007.12.018

  • Fisher P (2006) Classics from IJGIS: twenty years of the international journal of geographical information science and systems. CRC Press, Boca Raton

    Google Scholar 

  • Flaten O, Lien G, Tveteras R (2011) A comparative study of risk exposure in agriculture and aquaculture. Food Econ Acta Agricult Scand Sect C 8:20–34

    Google Scholar 

  • Francis RICC, Shotton R (1998) Can J Fish Aquat Sci 1997 54(8):1699–1715. https://doi.org/10.1139/f97-100

  • Fredriksson DW, Swift MR, Irish JD, Tsukrov I, Celikkol B (2003) Fish cage and mooring system dynamics using physical and numerical models with field measurements. Aquacult Eng 27:117–146. https://doi.org/10.1016/S0144-8609(02)00043-2

    Article  Google Scholar 

  • Gallardo B, Aldridge DC (2013) Evaluating the combined threat of climate change and biological invasions on endangered species. Biol Cons 160:225–233. https://doi.org/10.1016/j.biocon.2013.02.001

    Article  Google Scholar 

  • Gärtner D, Keller A, Schulin R (2013) A simple regional downscaling approach for spatially distributing land use types for agricultural land. Agric Syst 120:10–19. https://doi.org/10.1016/j.agsy.2013.04.006

    Article  Google Scholar 

  • Gegner L, Rinehart L (2009) Aquaculture enterprises: considerations and strategies. ATTRA—National sustainable agriculture information service

    Google Scholar 

  • Gesamp (2001) Planning and management for sustainable coastal aquaculture development. In: GESAMP reports and studies. FAO, Rome

    Google Scholar 

  • Giri C, Zhu Z, Tieszen LL, Singh A, Gillette S, Kelmelis JA (2008) Mangrove forest distributions and dynamics (19752005) of the tsunami-affected region of Asia. J Biogeogr 35(3):519–528. https://doi.org/10.1111/j.1365-2699.2007.01806.x

    Article  Google Scholar 

  • GlobalGap (2014) First small-scale Pangasius farmers achieve GLOBALG.A.P. Aquaculture group certificate. http://www.globalgap.org/es/news/First-Small-Scale-Pangasius-Farmers-Achieve-GLOBALG.A.P.-Aquaculture-Group-Certificate/. Accessed 16 July 2016

  • Global Trust Certification (2009) Global market report

    Google Scholar 

  • Glover KA, Hamre LA, Skaala, Nilsen F (2004) A comparison of sea louse (Lepeophtheirus salmonis) infection levels in farmed and wild Atlantic salmon (Salmo salar L.) stocks. Aquaculture 232(1–4):41–52. https://doi.org/10.1016/S0044-8486(03)00454-X

  • Guo FC, Woo PTK (2009) Selected parasitosis in cultured and wild fish. Vet Parasitol 163(3):207–216. https://doi.org/10.1016/j.vetpar.2009.06.016

    Article  CAS  Google Scholar 

  • Hamasaki K, Kitada S (2006) A review of kuruma prawn Penaeus japonicus stock enhancement in Japan. Fish Res 80(1):80–90. https://doi.org/10.1016/j.fishres.2006.03.018

    Article  Google Scholar 

  • Hargrave BT, Silvert W, Keizer PD (2005) Assessing and managing environmental risks associated with marine finfish aquaculture. In: Hargrave BT (ed) Environmental effects of marine finfish aquaculture. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 433–461. https://doi.org/10.1007/b136021

  • Harnisz M, Korzeniewska E, Gołas I (2015) Chemosphere the impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water 128:134–141. https://doi.org/10.1016/j.chemosphere.2015.01.035

    CAS  Google Scholar 

  • Hasan MR (2001) Nutrition and feeding for sustainable aquaculture development in the third millennium. In: Subasinghe RP, Bueno P, Phillips MJ, Hough C, McGladdery SE, Arthur JE (eds), Rome, 2001. NACA/FAO, pp 471–471

    Google Scholar 

  • Hayes KR (2002a) Identifying hazards in complex ecological systems. Part 1: fault-tree analysis for biological invasions. Biol Invasions 4(3):235–249. https://doi.org/10.1023/A:1020979914453

    Article  Google Scholar 

  • Hayes KR (2002b) Identifying hazards in complex ecological systems. Part 2: infection modes and effects analysis for biological invasions. Biol Invasions 4(3):251–261. https://doi.org/10.1023/A:1020943231291

    Article  Google Scholar 

  • Hechanova RG (1984) Problems on pond construction and maintenance on cat clay soils, UNDP/FAO, Rome

    Google Scholar 

  • Heistermann M, Muller C, Ronneberger K (2006) Land in sight? Achievements, deficits and potentials of continental to global scale land-use modeling. Agr Ecosyst Environ 114(2–4):141–158. https://doi.org/10.1016/j.agee.2005.11.015

    Article  Google Scholar 

  • Hennessy MM, Wilson L, Struthers W, Kelly LA (1996) Waste loadings from two freshwater Atlantic salmon juvenile farms in Scotland. Water Air Soil Pollut 86(1–4):235–249. https://doi.org/10.1007/BF00279159

    Article  CAS  Google Scholar 

  • Hilborn R (1998) The economic performance of marine stock enhancement projects. Bull Mar Sci 62(2):661–674

    Google Scholar 

  • Hirst P (2000) Democracy and governance. In: Pierre J (ed). Oxford University Press, pp 266–266

    Google Scholar 

  • Hishamunda N (2010) Aquaculture governance: why does it matter? FAO Aquaculture Newsletter, Rome

    Google Scholar 

  • Hishamunda N, Ridler N, Martone E (2014) Policy and governance in aquaculture lessons learned and way forward. FAO, Rome

    Google Scholar 

  • Hishamunda N, Ridler NB, Bueno P, Satia B, Kuemlangan B, Percy D, Gooley G, Brugere C, Sen S (2012) Improving aquaculture governance: what is the status and options? In: Subasinghe RP, Richard Arthur J, Bartley DM, De Silva SS, Halwart M, N Hishamunda, Mohan CV, Sorgeloos P (eds), vol 1. pp 233–264

    Google Scholar 

  • Hites RA, Foran JA, Carpenter DO, Hamilton MC, Knuth BA, Schwager SJ (2004) Global assessment of organic contaminants in farmed salmon. Science 303(5655):226–229. https://doi.org/10.1126/science.1091447

    Article  CAS  Google Scholar 

  • Hofherr J, Natale F, Trujillo P (2015) Is lack of space a limiting factor for the development of aquaculture in EU coastal areas? Ocean Coast Manag 116:27–36. https://doi.org/10.1016/j.ocecoaman.2015.06.010

    Article  Google Scholar 

  • Hossain MS, Chowdhury SR, Das NG, Sharifuzzaman SM, Sultana A (2009) Integration of GIS and multicriteria decision analysis for urban aquaculture development in Bangladesh. Landsc Urban Plan 90(3–4):119–133. https://doi.org/10.1016/j.landurbplan.2008.10.020

    Article  Google Scholar 

  • Hossain MS, Das NG (2010) GIS-based multi-criteria evaluation to land suitability modelling for giant prawn (Macrobrachium rosenbergii) farming in Companigonj Upazila of Noakhali, Bangladesh. Comput Electron Agricult 70(1):172–186. https://doi.org/10.1016/j.compag.2009.10.003

    Article  Google Scholar 

  • Huang CC, Tang HJ, Liu JY (2008) Effects of waves and currents on gravity-type cages in the open sea. Aquacult Eng 38(2):105–116. https://doi.org/10.1016/j.aquaeng.2008.01.003

    Article  Google Scholar 

  • Huang JJ, Xu J, Qiao F (2001) Production, accessibility and consumption patterns of aquaculture products in China, Rome, pp 275–275

    Google Scholar 

  • Hughes S, Rose JB (2011) Governing aquaculture for human security. In: Taylor WW, Lynch AJ, Schechter MG (eds). American Fisheries Society, pp 377–377

    Google Scholar 

  • Huntingford F, Jobling M, Kadri S (2012) Aquaculture and behavior. Wiley, NJ

    Google Scholar 

  • Huntington TC, Roberts H, Cousins N, Pitta V, Marchesi N, Sanmamed A, Hunter-Rowe T, Fernandes TF, Tett P, McCue J, Brockie N (2006) Some aspects of the environmental impact of aquaculture in sensitive areas

    Google Scholar 

  • Hurlburt BK, Brashear SS, Lloyd SW, Grimm CC, Thomson JL, Zimba PV (2009) Impact of weather on off-flavour episodes at a Louisiana commercial catfish farm. Aquac Res 40(5):566–574. https://doi.org/10.1111/j.1365-2109.2008.02132.x

    Article  Google Scholar 

  • Inglis GJ, Hayden BJ, Ross AH (2000) An overview of factors affecting the carrying capacity of coastal embayments for mussel culture. National Institute of Water & Atmospheric Research, New Zealand

    Google Scholar 

  • Jacobs MN, Covaci A, Schepens P (2002) Investigation of selected persistent organic pollutants in farmed Atlantic salmon (Salmo salar), salmon aquaculture feed, and fish oil components of the feed. Environ Sci Technol 36(13):2797–2805. https://doi.org/10.1021/es011287i

    Article  CAS  Google Scholar 

  • Johnson R (2007) The ecosystem approach to aquaculture: an analysis of adaptive governance and management of small-scale coastal shrimp aquaculture in Thailand. Stockholm University, Stockholm

    Google Scholar 

  • Johnson RW (1998) Risk management by risk magnitudes. Chem Heal Safe 5(5):1 – 2. (September/October 1998, Unwin Company Integrated Risk Management)

    Google Scholar 

  • Johnston MW, Purkis SJ (2016) Forecasting the success of invasive marine species; lessons learned from purposeful reef fish releases in the Hawaiian Islands. Fish Res 174:190–200. https://doi.org/10.1016/j.fishres.2015.10.011

    Article  Google Scholar 

  • Jonell M, Phillips M, Ronnback P, Troell M (2013) Eco-certification of farmed seafood: will it make a difference? Ambio 42(6):659–674. https://doi.org/10.1007/s13280-013-0409-3

    Article  Google Scholar 

  • Kapetsky JM, Aguilar-Manjarrez J (2013) From estimating global potential for aquaculture to selecting farm sites: perspectives on spatial approaches and trends. In: Ross LG, Telfer TC, Falconer L, Soto D, Aguilar-Manjarrez J (eds) FAO/Institute of Aquaculture, University of Stirling, Expert Workshop, Stirling, the United Kingdom of Great Britain and Northern Ireland, 6–8 Dec 2010. FAO Fisheries and Aquaculture, pp 129–146

    Google Scholar 

  • Kapetsky JM, Aguilar-Manjarrez J, Fao (2007) Geographic information systems, remote sensing and mapping for the development and management of marine aquaculture. FAO fisheries technical paper. Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Kim T, Lee J, Fredriksson DW, DeCew J, Drach A, Moon K (2014) Engineering analysis of a submersible abalone aquaculture cage system for deployment in exposed marine environments. Aquacult Eng 63:72–88. https://doi.org/10.1016/j.aquaeng.2014.10.006

    Article  Google Scholar 

  • Kirillin G, Shatwell T, Kasprzak P (2013) Consequences of thermal pollution from a nuclear plant on lake temperature and mixing regime. J Hydrol 496:47–56. https://doi.org/10.1016/j.jhydrol.2013.05.023

    Article  Google Scholar 

  • Kitada S (2014) Japanese chum salmon stock enhancement: current perspective and future challenges. Fish Sci 80(2):237–249. https://doi.org/10.1007/s12562-013-0692-8

    Article  CAS  Google Scholar 

  • Krause G, Brugere C, Diedrich A, Ebeling MW, Ferse SCA, Mikkelsen E, Pérez Agúndez JA, Stead SM, Stybel N, Troell M (2015) A revolution without people? Closing the people-policy gap in aquaculture development. Aquaculture 447:44–55. https://doi.org/10.1016/j.aquaculture.2015.02.009

    Article  Google Scholar 

  • Kura Y, Revenga C, Hoshino E, Mock G (2004) Fishing for answers making sense of the global fish crisis. World Resources Institute, Washington DC

    Google Scholar 

  • Lader P, Dempster T, Fredheim A, Jensen Ø (2008) Current induced net deformations in full-scale sea-cages for Atlantic salmon (Salmo salar). Aquacult Eng 38(1):52–65. https://doi.org/10.1016/j.aquaeng.2007.11.001

    Article  Google Scholar 

  • Langford T (1990) Ecological effects of thermal discharges. Pollution monitoring series. Springer, Netherlands

    Google Scholar 

  • Lawson T (2013) Fundamentals of aquacultural engineering, Illustrate edn. Springer, US

    Google Scholar 

  • Le TX, Munekage Y, Kato SI (2005) Antibiotic resistance in bacteria from shrimp farming in mangrove areas. Sci Total Environ 349(1–3):95–105. https://doi.org/10.1016/j.scitotenv.2005.01.006

    Article  CAS  Google Scholar 

  • Lebel P, Whangchai N, Chitmanat C, Lebel L (2015) Risk of impacts from extreme weather and climate in river-based tilapia cage culture in Northern Thailand. Int J Glob Warm 8(4):534–554. https://doi.org/10.1504/IJGW.2015.073054

    Article  Google Scholar 

  • Lee D (2009) Understanding aquaculture certification. Revista Colombiana de Ciencias Pecuarias 22(3):319–329

    Google Scholar 

  • Lehnert SJ, Heath DD, Pitcher TE (2012) Sperm trait differences between wild and farmed Chinook salmon (Oncorhynchus tshawytscha). Aquaculture 344–349:242–247. https://doi.org/10.1016/j.aquaculture.2012.03.007

    Article  Google Scholar 

  • Lent R, English E, Wulff R, de Séligny JP, Mahon R, Cox A, Balton D, Tompkins C, Tinkham S, Metzner R, Terry J, McGoodwin JR, Mellano G, Bexten A, Moore K (2008) Policy brief: fisheries and aquaculture—sustainability and governance. In: 4th Global conference on oceans, coasts and islands. Working Group on Fisheries and Aquaculture: Sustainability and Governance

    Google Scholar 

  • Lessner R (2015) New law aims to protect oyster farms from poachers. http://marylandreporter.com/2015/05/26/new-law-aims-to-protect-oyster-farms-from-poachers/. Accessed 16 July 2016

  • Lin CK, Shrestha MK, Thakurand DP, Diana JS (1997) Management to minimize the environmental impacts of pond effluent: harvest draining techniques and effluent quality. Aquacult Eng 25(2):125–135

    Article  Google Scholar 

  • Lind CE, Dana GV, Perera RP, Phillips MJ (2015) Risk analysis in aquaculture: a step-by-step introduction with worked examples, vol 2015–08. WorldFish, Penang, Malaysia

    Google Scholar 

  • Loneragan NR, Ye Y, Kenyon RA, Haywood MDE (2006) New directions for research in prawn (shrimp) stock enhancement and the use of models in providing directions for research. Fish Res 80(1):91–100. https://doi.org/10.1016/j.fishres.2006.03.014

    Article  Google Scholar 

  • Longdill PC (2007) Environmentally sustainable aquaculture: an eco-physical perspective. University of Waikato, Waikato

    Google Scholar 

  • Longdill PC, Healy TR, Black KP (2008) An integrated GIS approach for sustainable aquaculture management area site selection. Ocean Coast Manag 51(8–9):612–624. https://doi.org/10.1016/j.ocecoaman.2008.06.010

    Article  Google Scholar 

  • Lorenzen K (2008) Understanding and managing enhancement fisheries systems. Rev Fish Sci 16(1–3):10–23. https://doi.org/10.1080/10641260701790291

    Article  Google Scholar 

  • Luttrell C, Son HV, Thuan HL, Viet CT, Lan N, Xiem VD, Hieu DTL (2004) Sustainable livelihood opportunities and resource management in coastline communes facing special difficulties. Ministry of Planning and Investment

    Google Scholar 

  • Madeira D, Vinagre C, Diniz MS (2016) Are fish in hot water? Effects of warming on oxidative stress metabolism in the commercial species Sparus aurata. Ecol Ind 63:324–331. https://doi.org/10.1016/j.ecolind.2015.12.008

    Article  CAS  Google Scholar 

  • Mahmood N, Saikat SQ (1995) On acid sulfate soils of the coastal aquaculture. Pak J Mar Sci 4(1):39–43

    Google Scholar 

  • Marschke M, Wilkings A (2014) Is certification a viable option for small producer fish farmers in the global south? Insights from Vietnam. Mar Policy 50:197–206. https://doi.org/10.1016/j.marpol.2014.06.010

    Article  Google Scholar 

  • Masci M, Orban E, Nevigato T (2014) Organochlorine pesticide residues: an extensive monitoring of Italian fishery and aquaculture. Chemosphere 94:190–198. https://doi.org/10.1016/j.chemosphere.2013.10.016

    Article  CAS  Google Scholar 

  • Mazur NA, Curtis AL (2006) Risk perceptions, aquaculture, and issues of trust: lessons from Australia. Soc Nat Resour 19(9):791–808. https://doi.org/10.1080/08941920600835551

    Article  Google Scholar 

  • McDaniels T, Longstaff H, Dowlatabadi H (2006) A value-based framework for risk management decisions involving multiple scales: a salmon aquaculture example. Environ Sci Policy 9(5):423–438. https://doi.org/10.1016/j.envsci.2006.03.005

    Article  Google Scholar 

  • McGinnity P, Prodöhl P, Ferguson A, Hynes R, Maoiléidigh NO, Baker N, Cotter D, O’Hea B, Cooke D, Rogan G, Taggart J, Cross T (2003) Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc Biol Sci R Soc 270(1532):2443–2450. https://doi.org/10.1098/rspb.2003.2520

    Article  Google Scholar 

  • McGurk C, Morris DJ, Auchinachie NA, Adams A (2006) Development of Tetracapsuloides bryosalmonae (Myxozoa: Malacosporea) in bryozoan hosts (as examined by light microscopy) and quantitation of infective dose to rainbow trout (Oncorhynchus mykiss). Vet Parasitol 135(3–4):249–257. https://doi.org/10.1016/j.vetpar.2005.07.022

    Article  Google Scholar 

  • McIntosh D (2008) Aquaculture risk management. Northeastern Regional Aquaculture Center

    Google Scholar 

  • McKindsey CW, Thetmeyer H, Landry T, Silvert W (2006) Review of recent carrying capacity models for bivalve culture and recommendations for research and management. Aquaculture 261(2):451–462. https://doi.org/10.1016/j.aquaculture.2006.06.044

    Article  Google Scholar 

  • Miller LM, Kapuscinski AR, Senanan W, Paul S (2004) A biosafety approach to addressing risks posed by aquaculture escapees. WorldFish Center, Penang, pp 56–65

    Google Scholar 

  • Moccia RD, Bevan DJ (2005) Environmental issues concerning water use and wastewater impacts of land-based aquaculture facilities in Ontario, Final Version edn. Ontario Sustainable Aquaculture Working Group, Ontario

    Google Scholar 

  • Morgan F, LaFary EW (2009) GIS, ecosystems and urban planning in Auckland, New Zealand: technology, processes and people. In: Gatrell JD, Jensen RR (eds) Geotechnol ed. Springer Science+Business Media B.V., pp 57–77

    Google Scholar 

  • Morris DJ, Adams A (2006) Transmission of freshwater myxozoans during the asexual propagation of invertebrate hosts. Int J Parasitol 36(3):371–377. https://doi.org/10.1016/j.ijpara.2005.10.009

    Article  CAS  Google Scholar 

  • Muir WM (2004) The threats and benefits of GM fish. EMBO Rep 5(7):654–659. https://doi.org/10.1038/sj.embor.7400197

    Article  CAS  Google Scholar 

  • Murray AG (2015) Does the use of salmon frames as bait for lobster/crab creel fishing significantly increase the risk of disease in farmed salmon in Scotland? Prev Vet Med 120:357–366. https://doi.org/10.1016/j.prevetmed.2015.04.020

    Article  Google Scholar 

  • Nair CM, Salin KR (2012) Current status and prospects of farming the giant river prawn Macrobrachium rosenbergii (De Man) and the monsoon river prawn Macrobrachium malcolmsonii (H.M. Edwards) in India. Aquac Res 43(7):999–1014. https://doi.org/10.1111/j.1365-2109.2011.03074.x

    Article  Google Scholar 

  • Nair CM, Salin KR, Joseph J, Aneesh B, Geethalaksmi V, New MB (2014) Organic rice–prawn farming yields 20% higher revenues. Agron Sustain Dev 34(3):569–581. https://doi.org/10.1007/s13593-013-0188-z

    Article  Google Scholar 

  • Navas JM, Telfer TC, Ross LG (2011) Spatial modeling of environmental vulnerability of marine finfish aquaculture using GIS-based neuro-fuzzy techniques. Mar Pollut Bull 62(8):1786–1799. https://doi.org/10.1016/j.marpolbul.2011.05.019

    Article  CAS  Google Scholar 

  • Naylor R, Burke M (2005) Aquaculture and ocean resoources: raising tigers of the sea. Annu Rev Environ Resour 30(1):185–218. https://doi.org/10.1146/annurev.energy.30.081804.121034

    Article  Google Scholar 

  • Neto RM, Ostrensky A (2015) Nutrient load estimation in the waste of Nile tilapia Oreochromis niloticus (L.) reared in cages in tropical climate conditions. Aquac Res 46(6):1309–1322. https://doi.org/10.1111/are.12280

    Article  CAS  Google Scholar 

  • New MB, Nair CM, Kutty MN, Salin KR, Nandeesha MC (2008) Macrobrachium: the culture of freshwater prawns. Macmillan, Delhi

    Google Scholar 

  • Nobre AM, Musango JK, de Wit MP, Ferreira JG (2009) A dynamic ecological-economic modeling approach for aquaculture management. Ecol Econ 68(12):3007–3017. https://doi.org/10.1016/j.ecolecon.2009.06.019

    Article  Google Scholar 

  • Nostbakken OJ, Hove HT, Duinker A, Lundebye AK, Berntssen MHG, Hannisdal R, Lunestad BT, Maage A, Madsen L, Torstensen BE, Julshamn K (2015) Contaminant levels in Norwegian farmed Atlantic salmon (Salmo salar) in the 13-year period from 1999 to 2011. Environ Int 74:274–280. https://doi.org/10.1016/j.envint.2014.10.008

    Article  CAS  Google Scholar 

  • Nugent C (2009) Review of environmental impact assessment and monitoring in aquaculture in Africa, 527 edn. FAO, Rome, pp 59–151

    Google Scholar 

  • Nyerges TL, Jankowski P (2010) Regional and urban GIS: a decision support approach. Guilford Press

    Google Scholar 

  • OECD (2008) Gender and sustainable development: maximising the economic, social and environmental role of women

    Google Scholar 

  • OECD/FAO (2015) OECD-FAO Agricultural outlook 2015–2024. OECD Publishing, Paris

    Google Scholar 

  • OIE (2015) Aquatic animal health code (2015), 2015 edn. Organisation Mondiale de la Sante Animale

    Google Scholar 

  • Olafsen JA (2001) Interactions between fish larvae and bacteria in marine aquaculture. Aquaculture 200(1–2):223–247. https://doi.org/10.1016/S0044-8486(01)00702-5

    Article  Google Scholar 

  • Olalo C (2001) Production, accessibility and consumption patterns of aquaculture products in the Philippines. In: Production, accessibility, marketing and consumption patterns of freshwater aquaculture products in Asia: a cross-country comparison, vol FAO Fisheries Circular No. 973. Food and Agriculture Organisation of the United Nations, Rome, p 275

    Google Scholar 

  • Olanrewaju OS, Kader ASA, Wan Nik WB, Peter SW, Oladimeji O (2013) Apply Safety Risk and Reliability Analysis of Marine System. Xlibris Corporation

    Google Scholar 

  • Overmars KP, Helming J, van Zeijts H, Jansson T, Terluin I (2013) A modelling approach for the assessment of the effects of common agricultural policy measures on farmland biodiversity in the EU27. J Environ Manage 126:132–141. https://doi.org/10.1016/j.jenvman.2013.04.008

    Article  Google Scholar 

  • Ozbay G, Blank G, Thunjai T (2014) Impacts of aquaculture on habitats and best management practices (BMPs). In: Hernandez-Vergara MP, Perez-Rostro CI (eds). Intech Open, pp 274–274. https://doi.org/10.5772/57471

  • Paez-Osuna F (2001) The environmental impact of shrimp aquaculture: causes, effects, and mitigating alternatives. Environ Manage 28(1):131–140. https://doi.org/10.1007/s002670010212

    Article  CAS  Google Scholar 

  • Page FH, Losier R, McCurdy P, Greenberg D, Chaffey J, Chang B (2005) Dissolved oxygen and salmon cage culture in the Southwestern New Brunswick Portion of the Bay of Fundy. Hdb Env Chem 5(July):1–28. https://doi.org/10.1007/b136002

    Google Scholar 

  • Parker R (2011) Aquaculture science. Cengage Learning

    Google Scholar 

  • Pearsons TN, Fritts AL (1999) Maximum size of Chinook Salmon consumed by Juvenile Coho Salmon. N Am J Fish Manag 19(1):165–170. https://doi.org/10.1577/1548-8675(1999)019<0165:MSOCSC>2.0.CO;2

  • Pelletier N, Tyedmers P (2010) Life cycle assessment of frozen tilapia fillets from indonesian lake-based and pond-based intensive aquaculture systems. J Ind Ecol 14(3):467–481. https://doi.org/10.1111/j.1530-9290.2010.00244.x

    Article  CAS  Google Scholar 

  • Phanna N (2011) Mass balance for water and carbon (C) in Pangasius Ponds, Mekong Delta, pp 47–47

    Google Scholar 

  • Pillay TVR (1997) Economic and social dimensions of aquaculture management. Aquacult Econ Manag 1(1–2):3–11. https://doi.org/10.1080/13657309709380199

    Article  Google Scholar 

  • Prapaiwong N, Boyd CE (2012) Effluent volume and pollutant loads at an inland, low-salinity, shrimp farm in Alabama. Aquacult Eng 48:1–5. https://doi.org/10.1016/j.aquaeng.2011.12.004

    Article  Google Scholar 

  • Rabalais NN, Turner RE, Sen Gupta BK, Boesch DF, Chapman P, Murrell MC (2007) Hypoxia in the northern Gulf of Mexico: does the science support the plan to reduce, mitigate, and control hypoxia? Estuaries Coasts 30(5):753–772. https://doi.org/10.2307/27654714

    Article  CAS  Google Scholar 

  • Radiarta IN, Saitoh SI, Miyazono A (2008) GIS-based multi-criteria evaluation models for identifying suitable sites for Japanese scallop (Mizuhopecten yessoensis) aquaculture in Funka Bay, southwestern Hokkaido, Japan. Aquaculture 284(1–4):127–135. https://doi.org/10.1016/j.aquaculture.2008.07.048

    Article  Google Scholar 

  • Ragbirsingh Y, De Souza G (2005) Site suitability for aquaculture development on the Caroni River Basin, Trinidad West Indies using GIS, pp 661–673

    Google Scholar 

  • Rajitha K, Mukherjee CK, Vinu Chandran R, Prakash Mohan MM (2010) Land-cover change dynamics and coastal aquaculture development: a case study in the East Godavari Delta, Andhra Pradesh, India using multi-temporal satellite data. Int J Remote Sens 31(16):4423–4442. https://doi.org/10.1080/01431160903277456

    Article  Google Scholar 

  • Ranchan V (1984) A general review of the freshwater fish culture in India. In: Srivastava UK, Vathsala S (eds). Concept Publishing Company, pp 195–202

    Google Scholar 

  • Raptis CE, Pfister S (2016) Global freshwater thermal emissions from steam-electric power plants with once-through cooling systems. Energy 97:46–57. https://doi.org/10.1016/j.energy.2015.12.107

    Article  Google Scholar 

  • Rawson MV, Chen C, Ji R, Zhu M, Wang D, Wang L, Yarish C, Sullivan BJ, Chopin T, Carmona R (2002) Understanding the interaction of extractive and fed aquaculture using ecosystem modeling. In: Stickney RR, McVey JP (eds). CAB International, pp 263–296

    Google Scholar 

  • Reantaso MB (2008) Application of risk analysis in aquaculture production: outcomes of the desk study and the FAO/NACA expert workshop on understanding and applying risk analysis in aquaculture production. FAO Aquaculture Newsletter

    Google Scholar 

  • Rico A, Satapornvanit K, Haque MM, Min J, Nguyen PT, Telfer TC, van den Brink PJ (2012) Use of chemicals and biological products in Asian aquaculture and their potential environmental risks: a critical review. Rev Aquacult 4(2):75–93. https://doi.org/10.1111/j.1753-5131.2012.01062.x

    Article  Google Scholar 

  • Ross LG, Telfer TC, Falconer L, Soto D, Aguilar-Manjarrez J, Asmah R, Bermúdez J, Beveridge MCM, Byron CJ, Clément A (2013) Carrying capacities and site selection within the ecosystem approach to aquaculture, pp 19–19

    Google Scholar 

  • Sahu SC, Kumar M, Ravindranath N, H. (2016) Carbon stocks in natural and planted mangrove forests of Mahanadi mangrove wetland, East Coast of India. Current Sci 110(12):2253–2260

    Google Scholar 

  • Salam MA, Khatun NA, Ali MM (2005) Carp farming potential in Barhatta Upazilla, Bangladesh: a GIS methodological perspective. Aquaculture 245(1–4):75–87. https://doi.org/10.1016/j.aquaculture.2004.10.030

    Article  Google Scholar 

  • Saleh M (2008) Capture-based aquaculture of mullets in Egypt. In: Lovatelli A, Holthus PF (eds), pp 109–126

    Google Scholar 

  • Sammut J (1996) Amelioration and management of shrimp ponds in acid sulfate soils: key researchable issues. In: Smith PT (ed). Australian Centre for International Agricultural Research, Songkhla, pp 102–106

    Google Scholar 

  • Sanil NK, Vijayan KK, Kripa V, Mohamed KS (2010) Occurrence of the protozoan parasite, Perkinsus olseni in the wild and farmed Pearl Oyster, Pinctada fucata (Gould) from the Southeast coast of India. Aquaculture 299(1–4):8–14. https://doi.org/10.1016/j.aquaculture.2009.12.007

    Article  Google Scholar 

  • Scott C, Wilde A (2006) Measuring democratic governance: a framework for selecting pro-poor and gender sensitive indicators. UNDP

    Google Scholar 

  • Secretan PAD, Bueno PB, van Anrooy R, Siar SV, Olofsson A, Bondad-Reantaso MG, Funge-Smith S (2007) Guidelines to meet insurance and other risk management needs in developing aquaculture in Asia, vol 53, FAO Fisher edn. FAO, Rome. https://doi.org/10.1017/CBO9781107415324.004

    Google Scholar 

  • Sepúlveda F, Marín SL, Carvajal J (2004) Metazoan parasites in wild fish and farmed salmon from aquaculture sites in southern Chile. Aquaculture 235(1–4):89–100. https://doi.org/10.1016/j.aquaculture.2003.09.015

    Article  Google Scholar 

  • Sethi SA (2010) Risk management for fisheries. Fish Fish 11(4):341–365. https://doi.org/10.1111/j.1467-2979.2010.00363.x

    Article  Google Scholar 

  • Shang YC (1981) Aquaculture economics: basic concepts and methods of analysis. Westview special studies in agriculture/aquaculture science and policy. Westview Press, Boulder

    Google Scholar 

  • Shang YC, Tisdell CA (1997) Economic decision making in sustainable aquacultural development. In: Bardach J (ed). Wiley, NJ, pp 127–148

    Google Scholar 

  • Silva C, Ferreira JG, Bricker SB, DelValls TA, Martín-Díaz ML, Yáñez E (2011) Site selection for shellfish aquaculture by means of GIS and farm-scale models, with an emphasis on data-poor environments. Aquaculture 318(3–4):444–457. https://doi.org/10.1016/j.aquaculture.2011.05.033

  • Singh VP (1980) Management of fish ponds with acid sulphate soils. Asian Aquacult 5:4–6

    Google Scholar 

  • Siriwardena SN (2007) Freshwater fish seed resources and supply: Asia regional synthesis. In: G B-RM (ed), pp 59–90

    Google Scholar 

  • Slater MJ, Mgaya YD, Mill AC, Rushton SP, Stead SM (2013) Effect of social and economic drivers on choosing aquaculture as a coastal livelihood. Ocean Coast Manag 73:22–30. https://doi.org/10.1016/j.ocecoaman.2012.12.002

    Article  Google Scholar 

  • Small HJ, Pagenkopp KM (2011) Reservoirs and alternate hosts for pathogens of commercially important crustaceans: a review. J Invertebr Pathol 106(1):153–164. https://doi.org/10.1016/j.jip.2010.09.016

    Article  Google Scholar 

  • Solberg MF, Zhang Z, Glover KA (2015) Are farmed salmon more prone to risk than wild salmon? Susceptibility of juvenile farm, hybrid and wild Atlantic salmon Salmo salar L. to an artificial predator. Appl Anim Behav Sci 162:67–80. https://doi.org/10.1016/j.applanim.2014.11.012

    Article  Google Scholar 

  • Soon JM, Baines RN (2012) Aquaculture farm food safety and diseases risk assessment (AquaFRAM): development of a spreadsheet tool for salmon farms. Aquacult Eng 49:35–45. https://doi.org/10.1016/j.aquaeng.2012.02.002

    Article  Google Scholar 

  • Southall T, Telfer T, Hambrey J (2004) Environmental capacity modelling in aquaculture development, vol 1. Tropeca. Nautilus Consultants Ltd, Edinburgh, Scotland, UK., Institute of Aquaculture, University of Stirling, Scotland, UK., Hambrey Consulting, UK

    Google Scholar 

  • Sowles J (2003) Aquaculture task force discussion paper on bio-physical carrying capacity. Government of Maine Department of Marine Resources, Maine

    Google Scholar 

  • Spalding M, Kainuma M, Collins L (2010) World atlas of mangroves. Taylor & Francis Group, UK

    Google Scholar 

  • St-Hilaire S, Kent ML, Iwama GK (1998) Factors affecting the health of farmed and wild fish populations: a perspective from British Columbia. Canadian Stock Assessment Secretariat, Ottawa

    Google Scholar 

  • Staples D, Funge-Smith S (2009) Ecosystem approach to fisheries and aquaculture: implementing the FAO code of conduct for responsible fisheries

    Google Scholar 

  • Stenton-Dozey JME, Busby AJ, Jackson LF (1999) Impact of mussel cultire on Macrobenthic community structure in Saldanha Bay, South Africa. Mar Pollut Bull 39:357–366

    Article  CAS  Google Scholar 

  • Stevenson JR, Irz XT, Alcalde R-G, Morrisens P, Petit J (2007) An empirical typology of brackish-water pond aquaculture systems in the Philippines: a tool to aid comparative study in the sector. Aquacult Econ Manag 11(2):171–193. https://doi.org/10.1080/13657300701370358

    Article  Google Scholar 

  • Stigebrandt A (2011) Carrying capacity: general principles of model construction. Aquac Res 42(Suppl. 1):41–50. https://doi.org/10.1111/j.1365-2109.2010.02674.x

    Article  Google Scholar 

  • Stigebrandt A, Aure J, Ervik A, Hansen PK (2004) Regulating the local environmental impact of intensive marine fish farming: III. A model for estimation of the holding capacity in the modelling-ongrowing fish farm-monitoring system. Aquaculture 234(1–4):239–261. https://doi.org/10.1016/j.aquaculture.2003.11.029

  • Strain PM, Hargrave BT (2005) Salmon aquaculture, nutrient fluxes and ecosystem processes in Southwestern New Brunswick. Environ Eff Mar Finfish Aquacult 5(July):29–57. https://doi.org/10.1007/b136003

    Article  Google Scholar 

  • Subasinghe R, Ahmad I, Kassam L, Krishnan S, Nyandat B, Padiyar A, Phillips M, Reantaso M, Miao W, Yamamoto K (2012) Protecting small-scale farmers: a reality within a globalized economy? In: Subasinghe RP, Arthur JR, Bartley DM et al (eds) Farming the waters for people and food, 2012, pp 705–717

    Google Scholar 

  • Subasinghe R, Phillips M (2007) Aquaculture certification: a challenge for the small farmer? FAO Aquacult Newslett 38(September):34–36

    Google Scholar 

  • Swaminathan MS (2012) Aquaculture and sustainable nutrition security in a warming planet, keynote address. In: Subasinghe RP, Arthur JR, Bartley DM et al (eds) Farming the waters for people and food. FAO/NACA, pp 3–19

    Google Scholar 

  • Taberima S, Nugroho YD, Murdiyarso D (2014) The distribution of carbon stock in selected mangrove ecosystems of wetland Papua: Bintuni, Teminabuan and Timika Eastern Indonesia. In: Paper presented at the international conference on chemical, environmental and biological sciences (CEBS-2014), Kuala Lumpur, Sept 17–18

    Google Scholar 

  • Tabthipwon P (2008) Aquaculture development toward the sustainable and current situation of aquaculture. Food Fertil Technol Center, Taipei, pp 45–55

    Google Scholar 

  • Tacon AGJ, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285(1–4):146–158. https://doi.org/10.1016/j.aquaculture.2008.08.015

    Article  CAS  Google Scholar 

  • Taranger GL, Boxaspen KK, Madhun AS, Terje S (eds) (2011) Risk assessment—environmental impacts of Norwegian aquaculture. Institute of Marine Research

    Google Scholar 

  • Tekinay A, Guroy D, Cezik N (2009) The environmental effect of a land-based trout farm on Yuvarlakçay, Turkey. Ekoloji 73(19):65–70. https://doi.org/10.5053/ekoloji.2009.738

    Article  Google Scholar 

  • Teng S-K (2008) Risk analysis of the soil salinization due to low-salinity shrimp farming in central plain of Thailand (trans: FI). Reports and Studies—Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (UN/GESAMP). Food and Agriculture Organisation of the United Nations, Rome

    Google Scholar 

  • Tidwell J, Coyle S (2008) Impact of substrate physical characteristics on grow out of freshwater prawn, Macrobrachium rosenbergii, in ponds and pond microcosm tanks. J World Aquacult Soc 39(3):406–413. https://doi.org/10.1111/j.1749-7345.2008.00162.x

    Article  Google Scholar 

  • Tlusty M (2002) The benefits and risks of aquacultural production for the aquarium trade. Aquaculture 205:203–219

    Article  Google Scholar 

  • Trottier B (1987) Women in aquaculture production in West Africa. In: Nash CE, Engle CR, Crosetti D (eds) Women in Aquaculture, Rome

    Google Scholar 

  • Tsangaris C, Kormas K, Strogyloudi E, Hatzianestis I, Neofitou C, Andral B, Galgani F (2010) Multiple biomarkers of pollution effects in caged mussels on the Greek coastline. Comparat Biochem Physiol C Toxicol Pharmacol 151(3):369–378. https://doi.org/10.1016/j.cbpc.2009.12.009

    Article  CAS  Google Scholar 

  • Tucker CS, Hargreaves JA, Boyd CE (2008) Aquaculture and the environment in the United States. In: Tucker CS, Hargreaves JA (eds). Blackwell, pp 3–54

    Google Scholar 

  • Uki N (2006) Stock enhancement of the Japanese scallop Patinopecten yessoensis in Hokkaido. Fish Res 80(1):62–66. https://doi.org/10.1016/j.fishres.2006.03.013

    Article  Google Scholar 

  • UNWomen (2014) World survey on the role of women in development 2014: gender equality and sustainable development, vol I. https://doi.org/10.4324/9781315686455

  • USAID (2013) Sustainable fisheries and responsible aquaculture: a guide for USAID staff and partners. U.S. Agency for International Development, Washington, DC

    Google Scholar 

  • Valiela I (2006) Global coastal change. Wiley-Blackwell, Malden

    Google Scholar 

  • Van Meijl H, Van Rheenen T, Tabeau A, Eickhout B (2006) The impact of different policy environments on agricultural land use in Europe. Agr Ecosyst Environ 114(1):21–38. https://doi.org/10.1016/j.agee.2005.11.006

    Article  Google Scholar 

  • Vandergeest P, Unno A (2012) A new extraterritoriality? Aquaculture certification, sovereignty, and empire. Political Geogr 31(6):358–367. https://doi.org/10.1016/j.polgeo.2012.05.005

    Article  Google Scholar 

  • von Lompe M (2003) The world agricultural trade simulation system WATSIM an overview. Institut für Agrarpolitik, University of Bonn, Bonn

    Google Scholar 

  • Wada KT (1998) The present status of genetic conservation of cultured aquatic species in Japan. In: Harvey B, Ross C, Greer D, Carolsfeld J (eds) Action before extinction: an international conference on conservation of fish genetic diversity. IDRC, Vancouver, pp 225–230

    Google Scholar 

  • Waite R, Beveridge M, Brummett RE, Castine S, Chaiyawannakarn N, Kaushik S, Mungkung R, Nawapakpilai S, Phillips M (2014) Improving productivity and environmental performance of aquaculture, pp 1–60. https://doi.org/10.5657/FAS.2014.0001

  • Walker TR, Grant J, AaM Weise, McKindsey CW, Callier MD, Richard M (2014) Influence of suspended mussel lines on sediment erosion and resuspension Lagune de la Grande Entrée, Îles-de-la-Madeleine, Québec, Canada. Aquaculture 433:450–457. https://doi.org/10.1016/j.aquaculture.2014.07.006

    Article  Google Scholar 

  • Wang Q, Zhuang Z, Deng J, Ye Y (2006) Stock enhancement and translocation of the shrimp Penaeus chinensis in China. Fish Res 80(1):67–79. https://doi.org/10.1016/j.fishres.2006.03.015

    Article  Google Scholar 

  • Waples RS, Hindar K, Hard JJ (2012) Genetic risks associated with marine aquaculture. NOAA Technical Memorandum NMFS-NWFSC-119. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service

    Google Scholar 

  • Weinert M, Mathis M, Kröncke I, Neumann H, Pohlmann T, Reiss H (2016) Modelling climate change effects on benthos: distributional shifts in the North Sea from 2001 to 2099. Estuar Coast Shelf Sci, vol 175. https://doi.org/10.1016/j.ecss.2016.03.024

  • Weir LK, Grant JW (2005) Effects of aquaculture on wild fish populations: a synthesis of data. Environ Rev 13(4):145–168. https://doi.org/10.1139/a05-012

    Article  Google Scholar 

  • Weir LK, Hutchings JA, Fleming IA, Einum S (2005) Spawning behaviour and success of mature male Atlantic salmon (Salmo salar) parr of farmed and wild origin. Can J Fish Aquat Sci 62(5):1153–1160. https://doi.org/10.1139/f05-032

    Article  Google Scholar 

  • Wells G (1996) Hazard identification and risk assessment. Institution of Chemical Engineers

    Google Scholar 

  • White P, Diego-McGlone MLS (2008) Ecosystem-based approach to aquaculture management. Sci Diliman 20(2):1–10

    Google Scholar 

  • White PG (2013) Environmental consequences of poor feed quality and feed management. In: Hasan MR, New MB (eds) FAO, Fisher edn. FAO, Rome, pp 553–564

    Google Scholar 

  • WHO (2003) Patient safety: rapid assessment methods for estimating hazards—report of the WHO Working Group meeting Geneva, 17–19 Dec 2002, Geneva

    Google Scholar 

  • Williams L (2011) Impact of climate change on fisheries and aquaculture in the developing world and opportunities for adaptation. International Fund for Agricultural Development, Rome

    Google Scholar 

  • Wilson AG, Birkin M (1987) Dynamic models of agricultural location in a spatial interaction framework. Geogr Anal 19(1):31–56

    Article  Google Scholar 

  • WorldBank (1998) Shrimp farming and the environment—can Shrimp farming be undertaken sustainability? In: A discussion paper designed to assist in the development of sustainable shrimp aquaculture. World Bank, USA

    Google Scholar 

  • WorldBank (2015) The worldwide governance indicators. http://info.worldbank.org/governance/wgi/index.aspx#home. Accessed 18 July 2016

  • WorldFish (2011) Gender and aquaculture: sharing the benefits equitably. World Fish Center, Penang

    Google Scholar 

  • WorldFish C (2007) The threat to fisheries and aquaculture from climate change

    Google Scholar 

  • WRC-Report (2010) A manual for rural freshwater aquaculture. WRC Report No. TT 463/P/10. Rural Fisheries Programme, Rhodes University. Water Research Commission, Pretoria, South Africa

    Google Scholar 

  • WWAP (2016) The United Nations World Water Development report 2016: water and jobs (United Nations World Water Assessment Programme), UNESCO, Paris, France

    Google Scholar 

  • Yoe C (2012) Principles of risk analysis: decision making under uncertainty. CRC Press, Florida

    Google Scholar 

  • Yoo KH, Boyd CE (2012) Hydrology and water supply for pond aquaculture. Springer, US

    Google Scholar 

  • Young N, Matthews R (2011) The aquaculture controversy in Canada: activism, policy, and contested science. UBC Press

    Google Scholar 

  • Zhang YB, Li Y, Sun XL (2011) Antibiotic resistance of bacteria isolated from shrimp hatcheries and cultural ponds on Donghai Island, China. Mar Pollut Bull 62(11):2299–2307. https://doi.org/10.1016/j.marpolbul.2011.08.048

    Article  CAS  Google Scholar 

  • Zhao YP, Li YC, Dong GH, Gui FK, Teng B (2007) Numerical simulation of the effects of structure size ratio and mesh type on three-dimensional deformation of the fishing-net gravity cage in current. Aquacult Eng 36(3):285–301. https://doi.org/10.1016/j.aquaeng.2007.01.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna R. Salin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salin, K.R., Arome Ataguba, G. (2018). Aquaculture and the Environment: Towards Sustainability. In: Hai, F., Visvanathan, C., Boopathy, R. (eds) Sustainable Aquaculture. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-319-73257-2_1

Download citation

Publish with us

Policies and ethics