Data-Mining Possibilities in Blended Learning

  • Gabriella Baksa-Haskó
  • Brigitta Baranyai
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 716)


During our three years’ research, we have refined our on-line learning model based on the reflections of students and teachers. After the 3rd year, we examine not only the reflections but also the huge amount of data we collected during the semester. The aim of this paper is to present the data-mining tools we used, the results of our examinations and the next version of our model.


Blended learning Data mining Reflection 


  1. 1.
    Abonyi, J.: Adatbányászat a hatékonyság eszköze. Veszprémi Egyetem, Veszprém (2006)Google Scholar
  2. 2.
    Baksa-Haskó, G.: Efficiency over 1000 students – the evolution of an on-line course: from e-learning to flipped classroom. In: Auer, M., Guralnick, D., Uhomoibhi, J. (eds.) Interactive Collaborative Learning, Advances in Intelligent Systems and Computing, ICL 2016, vol. 545. Springer, Cham (2017)Google Scholar
  3. 3.
    Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R.: CRISP-DM 1.0. Letöltés dátuma: 2017. 03 02, forrás: IBN Corporation (2000).
  4. 4.
    Clark, R.C., Mayer, R.E.: e-Learning and the Science of Instruction: Proven Guidelines for Consumers and Designers of Multimedia Learning. Wiley, San Francisco (2011)CrossRefGoogle Scholar
  5. 5.
    Falch, M.: A study on practical experiences with using e-learning methodologies and cooperative transnational development methodology. In: LEONARDO DA VINCI Programme (2004).
  6. 6.
    Garrison, D.R.: E-Learning in the 21st Century: A Framework for Research and Practice. Taylor & Francis, New York (2011)Google Scholar
  7. 7.
    Hsin, W., Huang, Y., Soman, D.: A Practicioner’s Guide to Gamification of Education (2013)Google Scholar
  8. 8.
    Idemudia, E.C., Negash, S.: An empirical investigation of factors that influence – anxiety and evaluation in the virtual learning environment. In: Proceedings of the Southern Association for Information Systems Conference, Atlanta, GA, USA (2012).
  9. 9.
    Mok, H.N.: Teaching tip: the flipped classroom. J. Inf. Sys. Educ. 25(1), 7–11 (2014). Google Scholar
  10. 10.
    Ollé, J.: On-Line tanulási környezetek használatának sajátosságai a felsőoktatásban. In: Nádasi András (szerk.) Agria Media 2008 Információtechnikai és Oktatástechnológiai Konferencia és Kiállítás és ICI-8 Nemzetközi Informatikai Konferencia: WEB 2.0 a hatékony e-learning alapú oktatás. Eger, Magyarország, 27–28 October 2008. EKF Líceum Kiadó, pp. 84–85 (2008). ISBN: 978-963-9417-09-0Google Scholar
  11. 11.
    RapidMiner: A complete platform for predictive analytics. Letöltés dátuma: 2017. 03 10, forrás: RapidMiner 7.3 Data Science Platform (2016).
  12. 12.
    Russel, S., Norvig, P.: Artificial Intelligence. Pearson Education Inc., Upper Saddle River (2003)Google Scholar
  13. 13.
    Sun, P.-C., Tsai, R.J., Finger, G., Chen, Y.-Y., Yeh, D.: What drives a successful e-Learning? An empirical investigation of the critical factors influencing learner satisfaction. Comput. Educ. 50(4), 1183–1202 (2008)., CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Corvinus University of BudapestBudapestHungary

Personalised recommendations