Skip to main content

Fast Streaming Small Graph Canonization

  • Conference paper
  • First Online:
Complex Networks IX (CompleNet 2018)

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Included in the following conference series:

Abstract

In this paper, we introduce the streaming graph canonization problem. Its goal is finding a canonical representation of a sequence of graphs in a stream. Our model of a stream fixes the graph’s vertices and allows for fully dynamic edge changes, meaning it permits both addition and removal of edges. Our focus is on small graphs, since small graph isomorphism is an important primitive of many subgraph-based metrics, like motif analysis or frequent subgraph mining. We present an efficient data structure to approach this problem, namely a graph isomorphism discrete finite automaton and showcase its efficiency when compared to a non-streaming-aware method that simply recomputes the isomorphism information from scratch in each iteration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/ComplexNetworks-DCC-FCUP/streaming-small-isomorphism.

References

  1. Arvind, V., Das, B., Köbler, J.: The space complexity of k-tree isomorphism. In: International Symposium on Algorithms and Computation, pp. 822–833. Springer, Berlin (2007)

    Google Scholar 

  2. Babai, L.: Graph isomorphism in quasipolynomial time [extended abstract]. In: 48th Annual ACM SIGACT Symposium on Theory of Computing, pp. 684–697. ACM (2016)

    Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Erdos, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5(1), 17–60 (1960)

    MathSciNet  MATH  Google Scholar 

  5. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. ACM (JACM) 38(3), 690–728 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gori, M., Maggini, M., Sarti, L.: Exact and approximate graph matching using random walks. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1100–1111 (2005)

    Article  Google Scholar 

  7. Huang, H., Tang, J., Liu, L., Luo, J., Fu, X.: Triadic closure pattern analysis and prediction in social networks. IEEE Trans. Knowl. Data Eng. 27(12), 3374–3389 (2015)

    Article  Google Scholar 

  8. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., Van den Broeck, W.: What’s in a crowd? analysis of face-to-face behavioral networks. J. Theor. Biol. 271(1), 166–180 (2011)

    Article  MathSciNet  Google Scholar 

  9. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and sparse graphs. In: 9th Workshop on Algorithm Engineering and Experiments, pp. 135–149 (2007)

    Google Scholar 

  10. Kovanen, L., Karsai, M., Kaski, K., Kertész, J., Saramäki, J.: Temporal motifs in time-dependent networks. J. Stat. Mech. Theory Exp. 2011(11), P11005 (2011)

    Article  Google Scholar 

  11. Kuramochi, M., Karypis, G.: An efficient algorithm for discovering frequent subgraphs. IEEE Trans. Knowl. Data Eng. 16(9), 1038–1051 (2004)

    Article  Google Scholar 

  12. Leskovec, J., Krevl, A.: SNAP Datasets: stanford large network dataset collection. http://snap.stanford.edu/data (2014)

  13. McGregor, A.: Graph stream algorithms: a survey. ACM SIGMOD Rec. 43(1), 9–20 (2014)

    Article  Google Scholar 

  14. McKay, B.D., Piperno, A.: Practical graph isomorphism, ii. J. Symb. Comput. 60, 94–112 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: 10th ACM International Conference on Web Search and Data Mining, pp. 601–610. ACM (2017)

    Google Scholar 

  16. Wernicke, S.: Efficient detection of network motifs. IEEE/ACM Trans. Comput. Biol. Bioinform. 3(4) (2006)

    Google Scholar 

Download references

Acknowledgements

This work is partly financed by ERDF within project “POCI-01-0145-FEDER-006961”, by FCT as part of project “UID/EEA/50014/2013”, and by FourEyes, a research line within “TEC4Growth/NORTE-01-0145-FEDER-000020” financed by NORTE2020 through ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Paredes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paredes, P., Ribeiro, P. (2018). Fast Streaming Small Graph Canonization. In: Cornelius, S., Coronges, K., Gonçalves, B., Sinatra, R., Vespignani, A. (eds) Complex Networks IX. CompleNet 2018. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-73198-8_3

Download citation

Publish with us

Policies and ethics