Skip to main content

Discovering Mobility Functional Areas: A Mobility Data Analysis Approach

Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

How do we measure the borders of urban areas and therefore decide which are the functional units of the territory? Nowadays, we typically do that just looking at census data, while in this work we aim to identify functional areas for mobility in a completely data-driven way. Our solution makes use of human mobility data (vehicle trajectories) and consists in an agglomerative process which gradually groups together those municipalities that maximize internal vehicular traffic while minimizing external one. The approach is tested against a dataset of trips involving individuals of an Italian Region, obtaining a new territorial division which allows us to identify mobility attractors. Leveraging such partitioning and external knowledge, we show that our method outperforms the state-of-the-art algorithms. Indeed, the outcome of our approach is of great value to public administrations for creating synergies within the aggregations of the territories obtained.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-73198-8_27
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-73198-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    The analyzed trajectories are generated from raw GPS data using a tool called M-Atlas [6].

  2. 2.

    http://www.sobigdata.eu.

References

  1. Brezzi, M.: Redefining “Urban”: A New Way to Measure Metropolitan Areas. OECD (2012)

    Google Scholar 

  2. ISTAT: Local labour system

    Google Scholar 

  3. Boix, R., Veneri, P., Almenar, V.: Polycentric metropolitan areas in europe: towards a unified proposal of delimitation. Defining the Spatial Scale in Modern Regional Analysis, pp. 45–70. Springer, Berlin (2012)

    Google Scholar 

  4. Rinzivillo, S., Mainardi, S., Pezzoni, F., Coscia, M., Pedreschi, D., Giannotti, F.: Discovering the geographical borders of human mobility. KI - Künstliche Intell. 26(3), 253–260 (2012)

    CrossRef  Google Scholar 

  5. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    ADS  MathSciNet  CrossRef  Google Scholar 

  6. Trasarti, R., Rinzivillo, S., Pinelli, F., Nanni, M., Monreale, A., Renso, C., Pedreschi, D., Giannotti, F.: Exploring real mobility data with m-atlas. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 624–627. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  7. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)

    CrossRef  Google Scholar 

  8. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. PNAS 104(1), 36–41 (2007)

    ADS  CrossRef  Google Scholar 

  9. Coscia, M., Rossetti, G., Giannotti, F., Pedreschi, D.: Demon: a local-first discovery method for overlapping communities. In: Agarwal, D., Pei, J. (eds.) KDD, Q.Y. 0001, pp. 615–623. ACM (2012)

    Google Scholar 

  10. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)

    ADS  CrossRef  Google Scholar 

  11. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    CrossRef  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the European Community’s H2020 Program under the scheme ‘INFRAIA-1-2014-2015: Research Infrastructures,’ grant agreement #654024 ‘SoBigData: Social Mining and Big Data Ecosystem’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Gabrielli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Gabrielli, L. et al. (2018). Discovering Mobility Functional Areas: A Mobility Data Analysis Approach. In: Cornelius, S., Coronges, K., Gonçalves, B., Sinatra, R., Vespignani, A. (eds) Complex Networks IX. CompleNet 2018. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-73198-8_27

Download citation