Router-Level Topologies of Autonomous Systems

  • Muhammed Abdullah Canbaz
  • Khalid Bakhshaliyev
  • Mehmet Hadi Gunes
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

In order to understand the Internet topology, it is important to analyze the underlying networks’ characteristics. Internet is enabled by independently operating Autonomous Systems (ASes) that collaborate to provide end-to-end communication. In this paper, we investigate the network characteristics of backbone ASes that provide transit connectivity. We collect router-level probe data sets from all of the public Internet topology measurement platforms and obtain network topologies of the backbone ASes. We then analyze the network characteristics of each AS and perform an in-depth analysis of the high ranked ASes. Analyzing two snapshots, we observe disassortative network topologies in the majority of AS topologies independent of their network size. Also, most of the top-ranked ASes have a densely connected core and exhibit power-law degree distributions.

Notes

Acknowledgements

This material is based upon work supported by the National Science Foundation under grant number CNS-1321164 and EPS-IIA-1301726.

References

  1. 1.
    Alstott, J., Bullmore, E., Plenz, D.: Powerlaw: a python package for analysis of heavy-tailed distributions. PloS one 9(1), e85777 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Basu, A., Riecke, J.: Stability issues in ospf routing. In: Proceedings of the 2001 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. ACM SIGCOMM (2001)Google Scholar
  3. 3.
    Caida’s as rank. http://as-rank.caida.org/
  4. 4.
    Canbaz, M.A., Thom, J., Gunes, M.H.: Comparative analysis of internet topology data sets. In: 20th IEEE Global Internet Symposium (GI) (2017)Google Scholar
  5. 5.
  6. 6.
    Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Faggiani, A., Gregori, E., Improta, A., Lenzini, L., Luconi, V., Sani, L.: A study on traceroute potentiality in revealing the internet as-level topology. In: IEEE Networking Conference, IFIP (2014)Google Scholar
  8. 8.
    Giotsas, V., Luckie, M., Huffaker, B., claffy, k.: Inferring complex as relationships. In: Proceedings of the 2014 Conference on Internet Measurement Conference. ACM IMC (2014)Google Scholar
  9. 9.
    Govindan, R., Tangmunarunkit, H.: Heuristics for internet map discovery. In: Proceedings IEEE INFOCOM 2000Google Scholar
  10. 10.
    Gregori, E., Improta, A., Lenzini, L., Rossi, L., Sani, L.: A novel methodology to address the internet as-level data incompleteness. IEEE/ACM Trans. Netw. (TON) 23(4), 1314–1327 (2015)CrossRefGoogle Scholar
  11. 11.
    Gunes, M.H., Sarac, K.: Resolving ip aliases in building traceroute-based internet maps. IEEE/ACM Trans. Netw. (ToN) 17(6), 1738–1751 (2009)CrossRefGoogle Scholar
  12. 12.
    Keys, K.: Internet-scale ip alias resolution techniques. ACM SIGCOMM Comput. Commun. Rev. 40(1), 50–55 (2010)CrossRefGoogle Scholar
  13. 13.
    Keys, K., Hyun, Y., Luckie, M., Claffy, K.: Internet-scale ipv4 alias resolution with midar. IEEE/ACM Trans. Netw. 21(2), 383–399 (2013)CrossRefGoogle Scholar
  14. 14.
    Labovitz, C., Ahuja, A., Bose, A., Jahanian, F.: Delayed internet routing convergence. In: Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication. ACM SIGCOMM (2000)Google Scholar
  15. 15.
    Lambiotte, R., Delvenne, J.C., Barahona, M.: Random walks, markov processes and the multiscale modular organization of complex networks. IEEE Trans. Netw. Sci. Eng. 1(2), 76–90 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
  17. 17.
    Orsini, C., King, A., Giordano, D., Giotsas, V., Dainotti, A.: Bgpstream: a software framework for live and historical bgp data analysis. In: Proceedings of the 2016 ACM on Internet Measurement Conference. ACM IMC (2016)Google Scholar
  18. 18.
    Park, K., Lee, H.: On the effectiveness of route-based packet filtering for distributed dos attack prevention in power-law internets. ACM SIGCOMM Comput. Commun. Rev. 31, 15–25 (2001)Google Scholar
  19. 19.
    Piraveenan, M., Prokopenko, M., Zomaya, A.Y.: Local assortativity and growth of internet. Euro. Phys. J. B.-Condens. Matter Complex Syst. 70(2), 275–285 (2009)Google Scholar
  20. 20.
    Radoslavov, P., Tangmunarunkit, H., Yu, H., Govindan, R., Shenker, S., Estrin, D.: On characterizing network topologies and analyzing their impact on protocol design (2000)Google Scholar
  21. 21.
  22. 22.
    Spring, N., Mahajan, R., Wetherall, D., Anderson, T.: Measuring isp topologies with rocketfuel. IEEE/ACM Trans. Netw. 12(1), 2–16 (2004)CrossRefGoogle Scholar
  23. 23.
    University of california san diego, the ark measurement platform. https://ucsd.edu/ark/measurement/

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Muhammed Abdullah Canbaz
    • 1
  • Khalid Bakhshaliyev
    • 1
  • Mehmet Hadi Gunes
    • 1
  1. 1.Computer Science and Engineering DepartmentUniversity of NevadaRenoUSA

Personalised recommendations