Advertisement

Density Decompositions of Networks

  • Glencora Borradaile
  • Theresa Migler
  • Gordon Wilfong
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

We introduce a new topological descriptor of a network called the density decomposition which is a partition of the nodes of a network into regions of uniform density. The decomposition we define is unique in the sense that a given network has exactly one density decomposition. The number of nodes in each partition defines a density distribution which, we find, is measurably similar to the degree distribution of given real networks (social, internet, etc.) and measurably dissimilar in synthetic networks (preferential attachment, small world, etc.).

References

  1. 1.
    Alvarez-Hamelin, J., DallAsta, L., Barrat, A., Vespignani, A.: K-core decomposition of Internet graphs: hierarchies, self-similarity and measurement biases. Netw. Heterog. Media 3(2), 371 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Asahiro, Y., Miyano, E., Ono, H., Zenmyo, K.: Graph orientation algorithms to minimize the maximum outdegree. Int. J. Found. Comput. Sci. 18(2), 197–215 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Asahiro, Y., Jansson, J., Miyano, E., Ono, H.: Upper and lower degree bounded graph orientation with minimum penalty. In: Proceedings in Computing: The Australasian Theory Symposium, pp. 139–146 (2012)Google Scholar
  4. 4.
    Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and mapreduce. Proc. VLDB Endow. 5(5), 454–465 (2012)CrossRefGoogle Scholar
  5. 5.
    Barabási, A.-L.: Network Science. Cambridge University Press, Cambridge (2016)MATHGoogle Scholar
  6. 6.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bhattacharyya, A.K.: On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc 35, 99–109 (1943)MathSciNetMATHGoogle Scholar
  8. 8.
    Biedl, T., Chan, T., Ganjali, Y., Hajiaghayi, M.T., Wood, D.R.: Balanced vertex-orderings of graphs. Discret. Appl. Math. 148, 27–48 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Borradaile, G., Iglesias, J., Migler, T., Ochoa, A., Wilfong, G., Zhang, L.: Egalitarian graph orientations. J. Graph Algorithms Appl. 21, 687–708 (2017)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Charikar, M.: Greedy approximation algorithms for finding dense components in a graph. In: Proceedings of the Third International Workshop on Approximation Algorithms for Combinatorial Optimization, pp. 84–95. Springer, London, UK (2000)Google Scholar
  11. 11.
    de Fraysseix, H., de Mendez, P.O.: Regular orientations, arboricity, and augmentation. In: Proceedings of the DIMACS International Workshop on Graph Drawing, pp. 111–118. Springer, London, UK (1995)Google Scholar
  12. 12.
    Erdös, P., Rényi, A.: On random graphs I. Publicationes Mathematicae (Debrecen) 6, 290–297 (1959)Google Scholar
  13. 13.
    Frank, A., Gyárfás, A.: How to orient the edges of a graph? Colloquia Mathematica Societatis János Bolyai 1, 353–364 (1976)Google Scholar
  14. 14.
    Gallo, G., Grigoriadis, M., Tarjan, R.: A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Gao, P., Pérez-Giménez, X., Sato, C.: Arboricity and spanning-tree packing in random graphs with an application to load balancing. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, pp. 317–326. SIAM (2014)Google Scholar
  16. 16.
    Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive graphs. In: Proceedings of the 31st international conference on very large data bases, pp. 721–732. VLDB Endowment (2005)Google Scholar
  17. 17.
    Goldberg, A.: Finding a maximum density subgraph. Technical report, University of California at Berkeley, Berkeley, CA, USA (1984)Google Scholar
  18. 18.
    Harvey, N.J.A., Ladner, R.E., Lovász, L., Tamir, T.: Semi-matchings for bipartite graphs and load balancing. J Algorithms 59, 53–78 (2006)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Klimt, B., Yang, Y.: Introducing the Enron Corpus. In: First Conference on Email and Anti-Spam (2004)Google Scholar
  20. 20.
    Klostermeyer, W.F.: Pushing vertices and orienting edges. Ars Comb. 51, 65–75 (1999)MathSciNetMATHGoogle Scholar
  21. 21.
    Kowalik, Ł.: Approximation scheme for lowest outdegree orientation and graph density measures. In: Proceedings of the 17th International Conference on Algorithms and Computation, ISAAC’06, pp. 557–566. Springer, Berlin, Heidelberg (2006)Google Scholar
  22. 22.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, pp. 1361–1370. ACM, New York, NY, USA (2010). http://snap.stanford.edu/data/
  23. 23.
    Leskovec, J., Lang, K., Dasgupta, A., Mahoney, M.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. CoRR (2008). http://snap.stanford.edu/data/. arXiv:0810.1355
  24. 24.
    Łuczak, T.: Size and connectivity of the k-core of a random graph. Discret. Math. 91(1), 61–68 (1991)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Migler, T.: The Density Signature. Ph.D. thesis, Oregon State University (2014)Google Scholar
  26. 26.
    Newman, M.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69:066133 (2004). http://www-personal.umich.edu/mejn/netdata/
  27. 27.
    Picard, J.-C., Queyranne, M.: A network flow solution to some nonlinear 0–1 programming problems, with applications to graph theory. Networks 12, 141–159 (1982)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Pittel, B., Spencer, J., Wormald, N.: Sudden emergence of a giant k-core in a random graph. J. Comb. Theory Ser. B 67(1), 111–151 (1996)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Ripeanu, M., Foster, I., Iamnitchi, A.: Mapping the Gnutella network: Properties of large-scale peer-to-peer systems and implications for system design. IEEE Internet Comput. J 6:2002 (2002). http://snap.stanford.edu/data/
  30. 30.
    Saha, B., Hoch, A., Khuller, S., Raschid, L., Zhang, X-N.: Dense subgraphs with restrictions and applications to gene annotation graphs. In: Proceedings of the 14th Annual international conference on Research in Computational Molecular Biology, RECOMB’10, pp. 456–472. Springer, Berlin, Heidelberg (2010)Google Scholar
  31. 31.
    Seidman, S.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Tahajod, M., Iranmehr, A., Khozooyi, N.: Trust management for semantic web. In: Computer and Electrical Engineering, 2009. ICCEE ’09. Second International Conference, vol. 2, pp. 3–6 (2009). http://snap.stanford.edu/data/
  33. 33.
    Venkateswaran, V.: Minimizing maximum indegree. Discret. Appl. Math. 143, 374–378 (2004)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 409–10 (1998)CrossRefMATHGoogle Scholar
  35. 35.
    Wimmer, W.: Ein Verfahren zur Verhinderung von Verklemmungen in Vermittlernetzen, October 1978. http://www.worldcat.org/title/verfahren-zur-verhinderung-von-verklemmungen-in-vermittlernetzen/
  36. 36.
    Wittorff, V.: Implementation of constraints to ensure deadlock avoidance in networks (2009). US Patent # 7,532,584 B2Google Scholar
  37. 37.
    Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. In: Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, MDS ’12, pp. 3:1–3:8. ACM, New York, NY, USA (2012). http://snap.stanford.edu/data/
  38. 38.
    Zhang, Y.: Internet AS-level Topology Archive. http://irl.cs.ucla.edu/topology/

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Glencora Borradaile
    • 1
  • Theresa Migler
    • 2
  • Gordon Wilfong
    • 3
  1. 1.School of EECS Oregon State UniversityCorvallisUSA
  2. 2.Cal PolySan Luis ObispoUSA
  3. 3.Bell LabsMurray HillUSA

Personalised recommendations