Outer Synchronization for General Weighted Complex Dynamical Networks Considering Incomplete Measurements of Transmitted Information

  • Xinwei Wang
  • Guo-Ping Jiang
  • Xu Wu
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)


Outer synchronization for general weighted complex dynamical networks with randomly incomplete measurements of transmitted state variables is studied in this paper. The incomplete measurements of control information, always occurring during the transmission, should be considered seriously since it would cause the failure of outer synchronization process. Different from previous methods, we develop a new method to handle the incomplete measurements, which cannot only balance well the overly deviated controllers affected by the incomplete measurements, but also has no particular restriction on the node dynamics. Using the Lyapunov stability theory along with the stochastic analysis method, sufficient criteria are deduced rigorously to obtain the adaptive control law. Illustrative simulations are given to verify that our proposed controllers are effective and efficient dealing with the incomplete measurements.



This work is supported by the National Natural Science Foundation of China (Grant Nos. 61374180, 61373136).


  1. 1.
    Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)ADSCrossRefMATHGoogle Scholar
  2. 2.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)ADSCrossRefMATHGoogle Scholar
  3. 3.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Barabási, A.L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Phys. A Stat. Mech. Appl. 311(3), 590–614 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Phys. Rev. Lett. 100(21), 218701 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguná, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82(3), 036106 (2010)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Arenas, A., Daz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 2109–2112 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Wang, X.F., Chen, G.: Synchronization in scale-free dynamical networks: robustness and fragility. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49(1), 54–62 (2002)Google Scholar
  12. 12.
    Wang, X.F., Chen, G.: Synchronization in small-world dynamical networks. Int. J. Bifurc. Chaos 12(01), 187–192 (2002)CrossRefGoogle Scholar
  13. 13.
    Chen, T., Liu, X., Lu, W.: Pinning complex networks by a single controller. IEEE Trans. Circuits Syst. I Regul. Pap. 54(6), 1317–1326 (2007)Google Scholar
  14. 14.
    Nuno, E., Ortega, R., Basanez, L., Hill, D.: Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays. IEEE Trans. Autom. Control. 56(4), 935–941 (2011)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Korniss, G.: Synchronization in weighted uncorrelated complex networks in a noisy environment: optimization and connections with transport efficiency. Phys. Rev. E 75(5), 051121 (2007)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Du, D., Fei, M., Jia, T.: Modelling and stability analysis of MIMO networked control systems with multi-channel random packet losses. Trans. Inst. Meas. Control. 35(1), 66–74 (2013)CrossRefGoogle Scholar
  17. 17.
    Li, J.N., Bao, W.D., Li, S.B., Wen, C.L., Li, L.S.: Exponential synchronization of discrete-time mixed delay neural networks with actuator constraints and stochastic missing data. Neurocomputing 207, 700–707 (2016)CrossRefGoogle Scholar
  18. 18.
    Han, F., Wei, G., Ding, D., Song, Y.: Finite-horizon bounded \(H{\infty }\) synchronisation and state estimation for discrete-time complex networks: local performance analysis. IET Control. Theory Appl. 11(6), 827–837 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Liu, M., Chen, H.: \(H{\infty }\) state estimation for discrete-time delayed systems of the neural network type with multiple missing measurements. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 2987–2998 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Li, D., Wu, X., Lu, J.A.: Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system. J. Math. Anal. Appl. 323(2), 844–853 (2006)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Nanjing University of Posts and TelecommunicationsNanjingChina

Personalised recommendations