Advertisement

Semi-supervised Graph Embedding Approach to Dynamic Link Prediction

  • Ryohei Hisano
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

We propose a simple discrete-time semi-supervised graph embedding approach to link prediction in dynamic networks. The learned embedding reflects information from both the temporal and cross-sectional network structures, which is performed by defining the loss function as a weighted sum of the supervised loss from the past dynamics and the unsupervised loss of predicting the neighborhood context in the current network. Our model is also capable of learning different embeddings for both formation and dissolution dynamics. These key aspects contribute to the predictive performance of our model and we provide experiments with four real-world dynamic networks showing that our method is comparable to state of the art methods in link formation prediction and outperforms state-of-the-art baseline methods in link dissolution prediction.

Keywords

Link prediction Link dissolution Semi-supervised learning 

References

  1. 1.
    Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)CrossRefGoogle Scholar
  2. 2.
    Christakis, N.A.A., Fowler, J.H.H.: The spread of obesity in a large social network over 32 years. New Engl. J. Med. 357(4), 370–379 (2007). https://doi.org/10.1056/nejmsa066082
  3. 3.
    Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical structure and the prediction of missing links in networks. Nature 453, 98–101 (2008). https://doi.org/10.1038/nature06830
  4. 4.
    Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and tensor factorizations. ACM Trans. Knowl. Discov. Data 5(2), 10:1–10:27 (2011). https://doi.org/10.1145/1921632.1921636
  5. 5.
    Getoor, L., Diehl, C.P.: Link mining: a survey. SIGKDD Explor. Newsl. 7(2), 3–12 (2005). https://doi.org/10.1145/1117454.1117456
  6. 6.
    Hasan, M.A., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: Proceedings of SDM 06 Workshop on Link Analysis, Counterterrorism and Security (2006). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.1225
  7. 7.
    Hisano, R., Watanabe, T., Mizuno, T., Ohnishi, T., Sornette, D.: The gradual evolution of buyer-seller networks and their role in aggregate fluctuations. Appl. Netw. Sci. Forthcoming (2017)Google Scholar
  8. 8.
    Krivitsky, P.N., Handcock, M.S.: A separable model for dynamic networks. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 76(1), 29–46 (2014). https://doi.org/10.1111/rssb.12014
  9. 9.
    Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: Proceedings of the Twelfth International Conference on Information and Knowledge Management, CIKM ’03, pp. 556–559. ACM, New York, NY, USA (2003). https://doi.org/10.1145/956863.956972
  10. 10.
    Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, pp. 701–710. ACM, New York, NY, USA (2014). https://doi.org/10.1145/2623330.2623732
  11. 11.
    Preusse, J., Kunegis, J., Thimm, M., Gottron, T., Staab, S.: Structural dynamics of knowledge networks. In: ICWSM’13: Proceedings of the 7th International AAAI Conference on Weblogs and Social Media (2013). http://dl.dropboxusercontent.com/u/20411070/Publications/2013-ICWSM-Preusse-KTG.pdf
  12. 12.
    Sarkar, P., Siddiqi, S.M., Gordon, G.J.: A latent space approach to dynamic embedding of co-occurrence data. In: M. Meila, X. Shen (eds.) Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics (AISTATS 2007) (2007). http://www.stat.umn.edu/\(\backslash {\sim \{}\}\)aistat/proceedings/start.htmGoogle Scholar
  13. 13.
    Sarkar, P., Chakrabarti, D., Jordan, M.: Nonparametric link prediction in large scale dynamic networks. Electron. J. Stat. 8(2), 2022–2065 (2014). https://doi.org/10.1214/14-EJS943
  14. 14.
    Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex Embeddings for Simple Link Prediction, pp. 1–2 (2016). http://jmlr.org/proceedings/papers/v48/trouillon16.html
  15. 15.
    Westveld, A.H., Hoff, P.D.: A mixed effects model for longitudinal relational and network data, with applications to international trade and conflict. Ann. Appl. Stat. 5(2A), 843–872 (2011). https://doi.org/10.1214/10-AOAS403
  16. 16.
    Yang, Y., Lichtenwalter, R.N., Chawla, N.V.: Evaluating link prediction methods. Knowl. Inf. Syst. 45(3), 751–782 (2015). https://doi.org/10.1007/s10115-014-0789-0
  17. 17.
    Yang, Z., Cohen, W.W., Salakhutdinov, R.: Revisiting semi-supervised learning with graph embeddings. In: Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19–24, 2016, pp. 40–48 (2016). http://jmlr.org/proceedings/papers/v48/yanga16.html

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Social ICT centerUniversity of TokyoTokyoJapan

Personalised recommendations