Ballistic Range Experiment of Shock Stand-Off Distance for Spheres in Air with Flight Speeds Between 5.08 and 6.49 km/s

  • Liao Dongjun
  • Sen Liu
  • Hexiang Jian
  • Xie Aimin
  • Zonghao Wang
  • Jie Huang
Conference paper

Abstract

To measure the shock stand-off distance for spheres with flight speeds above 5 km/s in air and provide experimental data for validation of theory and numerical methods, measurement of shock stand-off distance for hypersonic sphere has been conducted in the hypervelocity ballistic range of China Aerodynamic Research and Development Center. The measurement was made for spheres with diameters of 8, 10, 12 and 15 mm, flight speeds between 5.08 and 6.49 km/s, and ambient pressures between 1.5 and 6.3 kPa. The shock stand-off distance was measured using transient shadowgraph and schlieren. The measurement error was analyzed and found to be between about ±3\(\%\) and ±8\(\%\). Under present test conditions, the flow near the stagnation point is speculated to be primarily nonequilibrium. The shock stand-off distance near stagnation point increases as the binary scaling parameter \(\rho \)R increases. The data match well with previous investigations of similar conditions. Different values of \(\rho \)R may have different influence on the state of the flow with different speed near the stagnation point.

References

  1. 1.
    Liao, D., Liu, S., Jian, H., et al.: Review of research on shock standoff distance for hypersonic sphere. J. Exp. Fuid Mech. 29(6), 1–7 (2015)Google Scholar
  2. 2.
    Park, C.: The limits of two-temperature model. AIAA. 911 (2010)Google Scholar
  3. 3.
    Spurk, J.H.: Experimental and numerical nonequilibrium studies. AIAA J. 8(6), 1039–1045 (1970)Google Scholar
  4. 4.
    Hornung, H.G.: Non-equilibrium dissociating nitrogen flow over spheres and circular cylinders. J. Fluid Mech. 64(4), 725–736 (1974)CrossRefGoogle Scholar
  5. 5.
    Miller III, C.G.: Shock shapes on blunt bodies in hypersonic-hypervelocity helium, air, and \(CO_2\) flows, and calibration results in Langley 6-inch expansion tube. NASA TN D-7800 (1975)Google Scholar
  6. 6.
    Hornung, H.G., Wen, C.Y.: Nonequilibrium dissociating flow over spheres. AIAA. 0091 (1995)Google Scholar
  7. 7.
    Belouaggadia, N., Hashimoto, T., Nonaka, S., et al.: Shock detachment distance on blunt bodies in nonequilibrium flow. AIAA J. 45(6), 1424–1429 (2007)Google Scholar
  8. 8.
    Liu, S., Wang, Z., Xie, A., et al.: Ballistic range experiments of hypersonic boundary layer transition on a cone-cylinder-flare configuration. J. Exp. Fluid Dyn. 27(6), 26–31 (2013)Google Scholar
  9. 9.
    Nonaka, S., Hashimoto, T., Furudate, M., et al.: Measurement of density distribution over a hemisphere in ballistic range. J. Thermophys. Heat Transf. 25(3), 464–468 (2011)CrossRefGoogle Scholar
  10. 10.
    Lobb, R.K.: Experimental Measurement of Shock Detachment Distance on Sphere Fired in Air at Hypervelocities, pp. 519–527. Pergamon Press, The High Temperature Aspects of Hypersonic Flow, New York (1964)Google Scholar
  11. 11.
    Nonaka, S., Mizuno, H., Takayama, K., et al.: Measurement of shock standoff distance for sphere in ballistic range. J. Thermophys. Heat Transf. 14(2), 225–229 (2000)CrossRefGoogle Scholar
  12. 12.
    Furudate, M., Nonaka, S., Sawada, K.: Behavior of two-temperature kinetic model in intermediate hypersonic. J. Thermophys. Heat Transf. 13(4), 424–430 (1999)CrossRefGoogle Scholar
  13. 13.
    Furudare, M., Suzuki, T., Sawada, K.: Calculation of intermediate hypersonic flow using multi-temperature model. AIAA. 0343 (2000)Google Scholar
  14. 14.
    Furudare, M., Suzuki, T., Sawada, K.: Vibration-dissociation coupling effects on shock standoff distances. AIAA. 2499 (2000)Google Scholar
  15. 15.
    Liu, J., Shi, A., Yang, G.: Measurement of non-equilibrium shock stand-off distance for sphere in ballistic range. In: 11th National Conference on Shock and Shock Tube (2004)Google Scholar
  16. 16.
    Liu, J., Le, J., Yang, H.: Numerical simulation of hypersonic flowfield around sphere model and experimental verification. J. Exp. Meas. Fluid Mech. 16(1), 67–79 (2002)Google Scholar
  17. 17.
    Liu, J.: Experimental and numerical research on thermo-chemical nonequilibrium flow with radiation phenomenon. Ph.D. thesis, National University of Defense Technology (2004)Google Scholar
  18. 18.
    Jiang, W.: Designation of Hypersonic Testing Facility. National Defence of Industry Press, Beijing (2001)Google Scholar
  19. 19.
    Liu, S., Huang, J., Li, Y., et al.: Recent advancement of hypervelocity impact tests at HAI. J. Manned Spacecraft. 17(6), 17–23 (2011)Google Scholar
  20. 20.
    Liu, S., Xie, A., Huang, J., et al.: Laser shadowgraph for the visualization of hypervelocity impact debris cloud. J. Exp. Fluid Dyn. 19(2), 35–39 (2005)Google Scholar
  21. 21.
    Zander, F., Gollan, R.J., Jacobs, P.A., et al.: Hypervelocity shock standoff on spheres in air. Shock Wave 14, 171–178 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Liao Dongjun
    • 1
  • Sen Liu
    • 1
  • Hexiang Jian
    • 1
  • Xie Aimin
    • 1
  • Zonghao Wang
    • 1
  • Jie Huang
    • 1
  1. 1.China Aerodynamics Research and Development CenterHypervelocity Aerodynamics InstituteMianyangPeople’s Republic of China

Personalised recommendations