Overexpanded Jet Flow Type of Symmetry Influence on the Differential Characteristics of Flowfield in the Compressed Layer

Conference paper

Abstract

The evolution of the incident shock in the plane overexpanded jet flow or in the axisymmetric one is analyzed theoretically at the whole range of governing flow parameters. Analytical results can be applied to avoid jet flow instability and self-oscillation effects at rocket launch, to improve launch safety and to suppress shock wave-induced noise harmful to environment and personnel.

References

  1. 1.
    Uskov, V.N., Chernyshov, M.V.: Differential characteristics of the flow field in a plane overexpanded jet in the vicinity of the nozzle lip. J. Appl. Mech. Tech. Phys. 47(3), 366–376 (2006)CrossRefMATHGoogle Scholar
  2. 2.
    Silnikov, M.V., Chernyshov, M.V., Uskov, V.N.: Two-dimensional over-expanded jet flow parameters in supersonic nozzle lip vicinity. Acta Astronaut. 97, 38–41 (2014)CrossRefGoogle Scholar
  3. 3.
    Adrianov, A.L., Starykh, A.L., Uskov, V.N.: Interference of Stationary Gasdynamic Discontinuities. Nauka, Novosibirsk (1995), in RussianGoogle Scholar
  4. 4.
    Brown, W.F.: The general consistence relations for shock waves. J. Math. Phys. 29(4), 252–262 (1950)CrossRefGoogle Scholar
  5. 5.
    Mölder, S., Timofeev, E., Emanuel, G.: Flow behind a concave hyperbolic shock. In: Kontis, K. (ed.) Proceedings of the 28th International Shock Waves Symposium, pp. 619–624. Springer, Berlin, London (2012)Google Scholar
  6. 6.
    Emanuel, G., Hekiri, H.: Vorticity and its rate of change just downstream of a curves shock. Shock Waves 17(1–2), 85–94 (2007)CrossRefMATHGoogle Scholar
  7. 7.
    Uskov, V.N., Mostovykh, P.S.: The flow gradients in the vicinity of a shock wave for a thermodynamically imperfect gas. Shock Waves 26(6) (2016)Google Scholar
  8. 8.
    Emanuel, G.: Shock Waves Dynamics: Derivatives and Related Topics. CRC Press, Boca Raton (2012)CrossRefGoogle Scholar
  9. 9.
    Omel’chenko, A.V., Uskov, V.N.: Optimal shock-wave systems under constraints on the total flow turning angle. Fluid Dyn. 31(4), 597–603 (1996)Google Scholar
  10. 10.
    Smirnov, N.N., Nikitin, V.F., Alyari Shurekhdeli, S.: Investigation of self-sustaining waves in metastable systems. J. Propul. Power 25(3), 593–608 (2009)CrossRefGoogle Scholar
  11. 11.
    Silnikov, M.V., Chernyshov, M.V., Uskov, V.N.: Analytical solutions for Prandtl-Meyer wave—oblique shock overtaking interaction. Acta Astronaut. 99, 175–183 (2014)CrossRefGoogle Scholar
  12. 12.
    Silnikov, M.V., Chernyshov, M.V.: The interaction of Prandtl-Meyer wave and quasi-one-dimensional flow region. Acta Astronaut. 109, 248–253 (2015)CrossRefGoogle Scholar
  13. 13.
    Meshkov, V.R., Omel’chenko, A.V., Uskov, V.N.: The interaction of shock wave with counter rarefaction wave. Vestnik Sankt-Peterburgskogo Universiteta. Ser. 1. Matematika Mekhanika Astronomiya. Issue 2, 101–109 (2002), (in Russian)Google Scholar
  14. 14.
    Mölder, S.: Curved shock theory. Shock Waves 26(4), 337–353 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Peter the Great Saint Petersburg Polytechnic UniversitySaint PetersburgRussia
  2. 2.Special Materials Corp.Saint PetersburgRussia

Personalised recommendations