Advertisement

Shock Wave Reflection and Attenuation in the Combined Blast Inhibitors

  • M. V. Silnikov
  • M. V. Chernyshov
  • A. S. Kapralova
  • A. I. Mikhaylin
  • A. S. Pankov
  • V. N. Shishkin
  • A. I. Spivak
  • A. G. Tyapko
Conference paper

Abstract

A robust blast-inhibiting bin is the most often used device for damage blast effects suppression. In particular, a top open cylindrical bin significantly reduces a fragmentation effect resulted from a detonation of an explosive device placed inside the bin. However, reduction of blast wave overpressure and impulse by such cylindrical bins is not sufficient (Gelfand et al, Shock Waves 20:317–321, 2010) [1]. A reasonable alternative to endless increase of height and thickness of robust blast-inhibiting bins is a development of destructible inhibitors having no solid elements in their structure and, therefore, excluding secondary fragmentation. So, the family of “Fountain” inhibitors (Vasil’ev et al, Izv Akad Nauk Energ 6:7–19, 2004) [2], (Silnikov and Mikhaylin, Acta Astronaut 97:30–37, 2014) [3] localizes and suppresses damaging blast effects due to multiphase working system. The present study is analyzing data obtained in testing of prototypes of new combined inhibitors. Their structure combines robust elements (bottoms, side surfaces) with elements responsible for blast loads reduction due to multiphase working system (top and low transverse embeddings) and fairings impeding wave propagation in undesirable directions.

Notes

Acknowledgements

The authors are grateful to Lieutenant-Colonel Yuri Frolenkov, Dr. Nikolay Vasilyev, Dr. Valery Dmitriev, Fedor Kompan, and other participants of the experiments.

References

  1. 1.
    Gelfand, B.E., Silnikov, M.V., Chernyshov, M.V.: On the efficiency of semi-closed blast inhibitors. Shock Waves 20, 317–321 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Vasil’ev Yu, S., Gelfand, B.E., Silnikov, M.V.: Impulse-energy technologies assisted with mitigation systems. Izv. Akad. Nauk Energ. 6, 7–19 (2004)Google Scholar
  3. 3.
    Silnikov, M.V., Mikhaylin, A.I.: Protection of flying vehicles against blast loads. Acta Astronaut. 97, 30–37 (2014)CrossRefGoogle Scholar
  4. 4.
    Igra, O., Falkovitz, J., Houas, L., Jourdan, G.: Review of methods to attenuate shock/blast waves. Prog. Aerosp. Sci. 58, 1–35 (2013)CrossRefGoogle Scholar
  5. 5.
    Ohtomo, F., Ohtani, K., Takayama, K.: Attenuation of shock waves propagating over arrayed baffles. Shock Waves 14, 379–390 (2005)CrossRefGoogle Scholar
  6. 6.
    Kitagawa, K., Yasuhara, M., Takayama, K.: Attenuation of shock waves propagating in polyurethane foams. Shock Waves 15, 437–445 (2006)CrossRefGoogle Scholar
  7. 7.
    Silnikov, M.V., Chernyshov, M.V., Mikhaylin, A.I.: Blast wave parameters at diminished ambient pressure. Acta Astronaut. 109, 235–240 (2015)CrossRefGoogle Scholar
  8. 8.
    Gelfand, B.E., Silnikov, M.V., Mikhaylin, A.I., Chernyshov, M.V.: Special devices “Fountain” for HE blast protection. In: IWSRIB 2009 CD Proceedings, Haifa, Israel (2009)Google Scholar
  9. 9.
    Gelfand, B.E., Gubanov, A.V., Timofeev, E.I.: Interaction of shock wave in air with a porous screen. Fluid Dyn. 18(4), 561–566 (1983)Google Scholar
  10. 10.
    Gvozdeva, L.G., Faresov, YuM, Fokeev, V.P.: Interaction of air shock wave with porous compressible materials. J. Appl. Mech. Tech. Phys. 26(3), 401–405 (1985)CrossRefGoogle Scholar
  11. 11.
    Vasilyev, N.N., Danilov, N.A., Dmitriev, V.Y., Spivak, A.I., Shishkin, V.N.: Experimental checkup of protective elements influence on the registered parameters of air shock wave, Problems of Defense Engineering. Ser. 16. Technical Means of Counter-Terrorism, No. 1–2, 87–92 (2015)Google Scholar
  12. 12.
    Medvedev, S.P., Tyrnov, E.P., Khomik, S.V., Gelfand, B.E., Silnikov, M.V., Mikhaylin, A.I: Restoring of blast wave after interaction with detached obstacle. In: Proceedings of the 27th International Symposium on Shock Waves. St. Petersburg, Poster presentation 30138, p. 386 (2009)Google Scholar
  13. 13.
    Baker, W.E.: Explosions in Air. University Texas, Austin (1973)Google Scholar
  14. 14.
    Gelfand, B.E., Silnikov, M.V.: Barothermal Action of Blasts. Asterion, St. Petersburg (2006)Google Scholar
  15. 15.
    Gelfand, B.E., Silnikov, M.V.: Shock-wave Action of Blasts. Asterion, St. Petersburg (2007)Google Scholar
  16. 16.
    Takayama, K., Silnikov, M.V., Chernyshov, M.V.: Experimental study of blast mitigating devices based on combined construction. Acta Astronaut. 126, 541–545 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • M. V. Silnikov
    • 1
    • 2
  • M. V. Chernyshov
    • 1
    • 2
  • A. S. Kapralova
    • 1
  • A. I. Mikhaylin
    • 1
    • 2
  • A. S. Pankov
    • 1
    • 2
  • V. N. Shishkin
    • 1
    • 2
  • A. I. Spivak
    • 2
  • A. G. Tyapko
    • 1
  1. 1.Peter the Great Saint Petersburg Polytechnic UniversitySaint PetersburgRussia
  2. 2.Special Materials Corp.Saint PetersburgRussia

Personalised recommendations