Skip to main content

Laser Ignition for Pulse Detonation Engines

  • Conference paper
  • First Online:
Book cover Shock Wave Interactions (RaiNew 2017)

Included in the following conference series:

  • 925 Accesses

Abstract

The high pressures and resultant momentum flux out of the chamber generate thrust. The ignition system of PDE has always posed problems in commercial applications. Microwave and laser-induced detonation in the mixture ofhydrogen with flake aluminum particles is simulated based on Eulerian approach. Minimum pulse energy of detonation is calculated for different parameters of laser pulse, mass fractions of particles, and compositions of gas mixture. The threshold intensity of optical breakdown on individual metal particle, and its dependence on contributing factors (particle radius, location of particle, total energy and time of laser pulse, radius of laser spot) are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aleksandrov, B.S., Klimuk, E.A., Kutumov, K.A., Lacour, B.M., Puech, V., Troshchinenko, G.A.: A repetitively pulsed HF laser with a large discharge gap operating on the F$_2$-H$_2$ mixture. Quantum Electron. 35, 805–808 (2005)

    Article  Google Scholar 

  2. Bityurin, V.A., Brovkin, V.G., Vedenin, P.V.: Investigation of the electromagnetic wave scattering dynamics during microwave streamer evolution. J. Tech. Phys. 57, 95–105 (2012)

    Article  Google Scholar 

  3. Chang, R.K., Eickmans, J.H., Hsieh, W.-F., Wood, C.F., Zhang, J.-Z., Zheng, J.: Laser-induced break-down in large transparent water droplets. Appl. Opti. 27, 2377–2385 (1988)

    Article  Google Scholar 

  4. Emelyanov, V.N., Volkov, K.N.: Prediction of the characteristics of the process of interaction of pulsed laser radiation with gas-dispersed systems. J. Eng. Phys. Thermophys. 78, 440–448 (2005)

    Article  Google Scholar 

  5. Emelyanov, V.N., Volkov, K.N.: Numerical simulation of laser-induced detonation in mixture of hydrogen with suspended metal particles. Int. J. Hydrog. Energy 39, 6222–6232 (2014)

    Article  Google Scholar 

  6. Fomin, P.A., Chen, J.-R.: Effect of chemically inert particles on parameters and suppression of detonation in gases, Combustion. Explos. Shock Waves 45, 303–313 (2009)

    Article  Google Scholar 

  7. Frost, D.L., Zhang, F.: Non-ideal blast waves from heterogeneous explosives. Mater. Sci. Forum 465–466, 421–426 (2004)

    Article  Google Scholar 

  8. Ingignoli, W., Veyssiere, B., Khasainov, B.A.: Study of detonation initiation in unconfined aluminium dust clouds. In: Gaseous and Heterogeneous Detonations, pp. 337–350. Moscow (1999)

    Google Scholar 

  9. Loth, E., Sivier, S., Baum, J.: Dusty detonation simulations with adaptive unstructured finite-elements. AIAA J. 35, 1018–1024 (1997)

    Article  MATH  Google Scholar 

  10. Negin, A.E., Osipov, V.P., Pakhomov, A.V.: Optical breakdown in aerosols under the influence of pulsed $CO_2$ laser radiation. Quantum Electron. 16, 1458–1463 (1986)

    Google Scholar 

  11. Papalexandris, M.V.: Numerical simulation of detonations in mixtures of gases and solid particles. J. Fluid Mechan. 507, 95–142 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Papalexandris, M.V.: The multidimensional structure of detonation waves in heterogeneous mixtures containing inert solid particles. In: Proceedings of the European Combustion Meeting. Louvain-la-Neuve (2005)

    Google Scholar 

  13. Qin, Q., Attenborough, K.: Characteristics and application of laser-generated acoustic shock waves in air. Appl. Acoust. 65, 325–340 (2004)

    Article  Google Scholar 

  14. Tanguay, V., Goroshin, S., Higgins, A.J., Zhang, F.: Aluminum particle combustion in high-speed detonation products. Combust. Sci. Technol. 181, 670–693 (2009)

    Article  Google Scholar 

  15. Tulis, A.J., Selman, J.R.: Detonation tube studies of aluminum particles dispersed in air. Proc. Combust. Inst. 19, 655–663 (1982)

    Article  Google Scholar 

  16. Volkov, K.: Laser-induced breakdown and detonation in gas-particle and gas-droplet mixtures. Horiz. World Phys. 284, 127–178 (2015)

    Google Scholar 

  17. Vorobiev, V.S.: Plasma arising during the interaction of laser radiation with solids. Adv. Phys. Sci. 36, 1129–1157 (1993)

    Google Scholar 

  18. Zhang, F., Grőnig, H., Van De Ven, A.: DDT and detonation waves in dust-air mixtures. Shock Waves 11, 53–71 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Education and Science of Russian Federation (agreement No 14.578.21.0203, unique identifier of applied scientific research RFMEFI57816X0203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Bulat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bulat, P., Volkov, K. (2018). Laser Ignition for Pulse Detonation Engines. In: Kontis, K. (eds) Shock Wave Interactions. RaiNew 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-73180-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73180-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73179-7

  • Online ISBN: 978-3-319-73180-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics