Analysis of Planar and Spherical Shock-Wave Mitigation by Wet Aqueous Foams

  • C. Breda
  • S. Kerampran
  • M.-O. Sturtzer
  • M. Arrigoni
  • J.-F. Legendre
Conference paper


In a context where more and more Improvised Explosive Devices (IED) are found on national territories or theaters of external operations, the fight against IEDs has intensified since 2008, aiming, in particular, at designing reliable blast mitigation systems. Aqueous foams were identified in the 1970s as an efficient protective medium against blast and sound effects. They have been widely used because of their ease of application, but the quantification of the physical phenomena leading to mitigation remains unclear.


  1. 1.
    Winfield, F.H., Hill, D.A.: Preliminary results on the physical properties of aqueous foams and their blast attenuating characteristics. Suffield Technical Notes, Defense Research Establishment, Suffield, Ralston, Alberta (1977)Google Scholar
  2. 2.
    Hartman, W., Boughton, B., Larsen, M.: Blast mitigation capabilities of aqueous foam, Technical report SAND2006-0533, Sandia National Laboratories (2006)Google Scholar
  3. 3.
    Domergue, L., Nicolas, R., Marle, J.-C., Mathey, L., Daloisio, M., Buche, L., Hubert, C.: Shock wave attenuation in aqueous foam. In: 3rd International Conference on Safety and Security Engineering, Inbook Series: WIT Transactions on the Built Environment,Safety and Security Engineering III, Rome, Italy, vol. 108, pp. 83–92 (2009)Google Scholar
  4. 4.
    McCallen, R.C. et al.: SERDP Munition Disposal source characterization pilot study, UCRL-CR-121838, Lawrence Livermore National Laboratory (1995)Google Scholar
  5. 5.
    Del Prete, E., Chinnayya, A., Domergue, L., Hadjadj, A., Haas, J.-F.: Blast wave mitigation by dry aqueous foams. Shock waves 23(1), 39–53 (2012)CrossRefGoogle Scholar
  6. 6.
    Gelfand, B.: Blast Effects Caused by Explosions (2004)Google Scholar
  7. 7.
    Raspet, R., Griffiths, S.K.: The reduction of blast noise with aqueous foam. J. Acoust. Soc. Am. 74(6), 1757–1763 (1983)CrossRefGoogle Scholar
  8. 8.
    Britan, A., et al.: Macromechanical modeling of blast-wave mitigation in foams. Part I: review of available experiments and models. Shock Waves 23, 5–23 (2013)CrossRefGoogle Scholar
  9. 9.
    Ball, G.J., East, R.A.: Shock and blast attenuation by aqueous foam barriers: influence of barrier geometry. Shock waves 9(1), 37–47 (1999)CrossRefzbMATHGoogle Scholar
  10. 10.
    Borisov, A.A., Gelfand, G.E., Kudinov, V.M., Palamarchuk, B.I., Stepanov, V.V., Timofeev, E.I., Khomik, S.V.: Shock waves in water foams. Acta Astronautica 5, 1027–1033 (1978)CrossRefGoogle Scholar
  11. 11.
    Britan, B., Ben-Dor, G., Shapiro, H., Liverts, M., Shreiber, I.: Drainage effects on shock wave propagating through aqueous foams. Colloids Surf. Physicochem.Eng. Asp. 309, 137–150 (2007)CrossRefGoogle Scholar
  12. 12.
    Kudinov, V.M., Palamarchuk, B.I., Vakhnenko, V.A.: Attenuation of a strong shock wave in a two-phase medium. Sov. Phys. Dokl. 28(10), 842–842 (1983)zbMATHGoogle Scholar
  13. 13.
    Goldfarb, I.I., Shreiber, I.R., Vafina, F.I.: Heat transfer effect on sound propagation in foam. J. Acoust. Soc. Am. 92, 2756 (1992)CrossRefGoogle Scholar
  14. 14.
    Ranjan, D., Oakley, J., Bonnazza, R.: Shock-Bubble interactions. Ann. Rev. Fluid Mech. 43, 117–140 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    de Krasinski, J.S.: Some aspects of the fluid dynamics of liquid-air foams of high dryness fraction. Prog. Aerosp. Sci. 29, 125–163 (1993)CrossRefGoogle Scholar
  16. 16.
    Mallock, A.B.: The damping of sound by frothy liquids. Proc. Roy. Soc. Ser. A 84, 391–395 (1910)Google Scholar
  17. 17.
    Surov, V.S.: Comparative analysis of two foam models. Combustion, Explosion and Shock Waves, vol. 31, n 31 (1995)Google Scholar
  18. 18.
    de Krasinski, J.S., Khosla, A.: Shock wave propagation and attenuation in foams. In: Fifth Australian Conference, University of Canterbury (1974)Google Scholar
  19. 19.
    Weaver, P.M., Pratt, N.H.: Experiment study of shock structure in aqueous foams and the unsteady shock emergence at a foam/air boundary. AIP Conf. Proc. 208, 819 (1990)CrossRefGoogle Scholar
  20. 20.
    Igra, O., Shreiber, I.: Formation of shock waves in gas-liquid foams. shock Waves 5, 189–192 (1995)CrossRefzbMATHGoogle Scholar
  21. 21.
    Miura, H.: Weak Shock Waves in a liquid containing gas bubbles. J. Phys. Soc. Jpn. 32(3) (1972)Google Scholar
  22. 22.
    Weaver, P.M., Pratt, N.H.: An experimental Investigation of the mechanisms of shock wave aqueous foam interactions. In: Proceedings of the International Symposium on Shock Tubes and Waves. VCH, Aachen, Germany (1988)Google Scholar
  23. 23.
    Zhdan, C.A.: Numerical modeling of the explosion of a high explosive charge (HE) in foam. Combust. Explos. Shock Waves 26(2), 221–227 (1990)CrossRefGoogle Scholar
  24. 24.
    Panczak, T.D., Krier, H.: Shock propagation and blast attenuation through aqueous foams. J. Hazard. Mat. 14, 321–336 (1987)CrossRefGoogle Scholar
  25. 25.
    Cantat, I., et al.: Les Mousses: Structure et Dynamique. Belin, Paris (2010)Google Scholar
  26. 26.
    Wood, A.B.: A Textbook of Sound. Bell, London (1944)Google Scholar
  27. 27.
    Pierre, J., Dollet, B., Leroy, V.: Resonant acoustic propagation and negative density in liquid foams. Phys. Rev. Lett. 112, 148307 (2014)CrossRefGoogle Scholar
  28. 28.
    Kinney, G.F., Graham, K.J.: Explosive Shocks in Air, 2nd edn. Springer, New York (1985)Google Scholar
  29. 29.
    Larsen, M.: Nest calculator, Technical report SAND94-2030, SANDIA National Laboratory (1994)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • C. Breda
    • 1
    • 2
  • S. Kerampran
    • 1
  • M.-O. Sturtzer
    • 2
  • M. Arrigoni
    • 1
  • J.-F. Legendre
    • 2
  1. 1.IRDL, ENSTA BretagneBrestFrance
  2. 2.Institut Franco-allemand de Saint LouisSt. LouisFrance

Personalised recommendations