Triple-Point Singularity and the Neumann Paradox of Mach Reflection

  • A. Sakurai
  • S. Kobayashi
Conference paper


The singular nature of the flow near the triple point is investigated analytically based on a solution of the steady 2D Navier–Stokes equations system in polar coordinates, with special attention on the cause of the Neumann paradox. It gives a centered fan-like flow from the triple point in widening the slip flow region. Angles and curvatures of the reflected (R) and Mach stem (m) shock lines given in the solution are consistent with existing experiment data.


  1. 1.
    Birkoff, G.: Hydrodynamics, A Study in Logic, Fact, and Similitude, 1st edn. Princeton Univ. Press, Princeton (1950)Google Scholar
  2. 2.
    Bleakney, W., Taub, A.H.: Interaction of shock waves. Rev. Modern Phys. 21, 584–605 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Sternberg, J.: Triple-shock-wave Interactions. Phys. Fluids 2(2), 172–206 (1959)CrossRefGoogle Scholar
  4. 4.
    Tesdall, M., Sanders, R., Keyfitz, L.: Self-similar solutions for the triple point paradox in gasdynamics. SIAM J. Appl. Math. 68, 1360–1377 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    von Neumann, J.: Collected Works, vol. 6. Pergamon Press, New York (1963)zbMATHGoogle Scholar
  6. 6.
    Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves, pp. 332–333. Interscience, New York (1963)zbMATHGoogle Scholar
  7. 7.
    Lighthill, M.J.: Diffraction of blast 1. Proc. Roy. Soc. London A198, 454 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Sakurai, A., Takahashi, S.: An analytical solution for weak Mach reflection and its application to the problem of the von Neumann paradox. J. Phys. Soc. Japan 74, 1490–1495 (2005)CrossRefzbMATHGoogle Scholar
  9. 9.
    Sakurai, A.: On the problem of weak Mach reflection. J. Phys. Soc. Japan 19, 1440–1450 (1964)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Sakurai, A., Tsukamoto, M., Khotyanovsky, D., Ivanov, M.: The flow field near the triple point in steady shock reflection. Shock Waves 21, 267–272 (2011)CrossRefGoogle Scholar
  11. 11.
    Adachi, T., Sakurai, A., Kobayashi, S.: Effect of boundary layer on Mach reflection over a wedge surface. Shock Waves 11, 271–278 (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tokyo Denki UniversityTokyoJapan
  2. 2.Saitama Institute of TechnologyFukaya, SaitamaJapan

Personalised recommendations