Experimental and Numerical Visualisation of Supersonic Flow over the British Isles

  • Craig White
  • Konstantinos Kontis
Conference paper


Colour schlieren experimental results for Mach 5 flow over an arbitrary geometry that generates complex shock structures and shock interactions are presented. The experiment is rebuilt using the rhoCentralFoam solver to solve the compressible Navier–Stokes equations and a numerical analogue, the density gradients (i.e. pseudo-schlieren), is compared to the experimental result, showing very good qualitative agreement. The numerical results give data that can be post-processed to visualise the shock waves by taking advantage of changes in pressure, entropy, velocity, etc. across a shock, in addition to the gradients of density. It is shown that, at least for the geometry and Mach number studied here, the divergence of the velocity field produces the best numerical shock detection method.


  1. 1.
    Samtaney, R., Morris, R.D., Cheeseman, P., Sunelyansky, V., Maluf, D., Wolf, D.: Visualization, extraction and quantification of discontinuities in compressible flows. In: International Conference on Computer Vision and Pattern Recognition (2000)Google Scholar
  2. 2.
    Erdem, E., Kontis, K.: Numerical and experimental investigation of transverse injection flows. Shock Waves 20(2), 103–118 (2010)CrossRefGoogle Scholar
  3. 3.
    Kontis, K., Lada, C., Zare-Behtash, H.: Effect of dimples on glancing shock wave turbulent boundary layer interactions. Shock Waves 17(5), 323–335 (2008)CrossRefGoogle Scholar
  4. 4.
    Saad, M.R., Zare-Behtash, H., Che-Idris, A., Kontis, K.: Micro-ramps for hypersonic flow control. Micromachines 3(2), 364–378 (2010)Google Scholar
  5. 5.
    Erdem, E., Kontis, K., Yang, L.: Steady energy deposition at mach 5 for drag reduction. Shock Waves 23(4), 285–298 (2012)Google Scholar
  6. 6.
    Ukai, T., Zare-Behtash, H., Lo, K.H., Kontis, K., Obayashi, S.: Effects of dual jets distance on mixing characteristics and flow path within a cavity in supersonic crossflow. Int. J. Heat Fluid Flow 50, 254–262 (2014)Google Scholar
  7. 7.
    Kontis, K., Stollery, J.L.: Control effectiveness of a jet-slender body combination at hypersonic speeds. J. Spacecr. Rockets 34(6), 762–768 (1997)Google Scholar
  8. 8.
    Mariani, R., Kontis, K.: Experimental studies on coaxial vortex loops. Phys. Fluids 22(12), 126102 (2010)CrossRefGoogle Scholar
  9. 9.
    Zare-Behtash, H., Lo, K.H., Kontis, K., Ukai, T., Obayashi, S.: Transverse jet-cavity interactions with the influence of an impinging shock. Int. J. Heat Fluid Flow 53, 146–155 (2015)Google Scholar
  10. 10.
    Gongora-Orozco, N., Zare-Behtash, H., Kontis, K.: Global unsteady pressure-sensitive paint measurements of a moving shock wave using thin-layer chromatography. Measurement 43(1), 152–155 (2010)CrossRefGoogle Scholar
  11. 11.
    Zare-Behtash, H., Gongora-Orozco, N., Kontis, K.: Effect of primary jet geometry on ejector performance: a cold-flow investigation. Int. J. Heat Fluid Flow 32(3), 596–607 (2011)CrossRefGoogle Scholar
  12. 12.
    Yang, L., Erdem, E., Zare-Behtash, H., Kontis, K., Saravanan, S.: Pressure-sensitive paint on a truncated cone in hypersonic flow at incidences. Int. J. Heat Fluid Flow 37, 9–21 (2012)Google Scholar
  13. 13.
    Greenshields, C.J., Weller, H.G., Gasparini, L., Reese, J.M.: Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. Int. J. Numer Methods Fluids 63(1), 1–21 (2010)MathSciNetzbMATHGoogle Scholar
  14. 14.
    OpenFOAM Foundation (2015).
  15. 15.
    Anderson, J.A.: Modern Compressible Flow: With Historical Perspective. McGraw-Hill Education (2002)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Aerospace Sciences Division, School of EngineeringUniversity of GlasgowGlasgowUK

Personalised recommendations