Skip to main content

Exploration of the QCD Phase Diagram at Finite Baryon Density Region: Recent Results from RHIC Beam Energy Scan-I

  • Conference paper
  • First Online:
XXII DAE High Energy Physics Symposium

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 203))

Abstract

We report selected results from the first phase of the beam energy scan program (BES-I) at RHIC. During the BES-I program we have collected data from Au\(+\)Au collisions at the center of mass energy range from \(\sqrt{s_{NN}}=7.7\) to 200 GeV, corresponding to baryonic chemical potential of \(\mu _B\approx \) 420 MeV to 20 MeV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In high-energy nuclear collisions at LHC \(\sqrt{s_{NN}}= 2.76 - 5.02\) TeV and at RHIC \(\sqrt{s_{NN}}= 200\) GeV, the values of baryonic chemical potential are found to be \(\mu _B \sim 0\) and 25 MeV, respectively. All are much smaller than that of the transition temperature \(T \approx 155\) MeV [2].

  2. 2.

    In high-energy nuclear collisions, due to the finite sizes and finite evolution time, precisely speaking there is no critical point but rather a critical region. All experimental efforts should look for the critical ‘region’ [3].

References

  1. Y. Aoki et al., Nature 443, 675 (2006)

    Google Scholar 

  2. A. Bazavov et al., Phys. Rev. D85, 054503 (2012); O. Kaczmarek et al., Phys. Rev. D83, 014504 (2011); M. Swagato, private communications (2012)

    Google Scholar 

  3. M.A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011)

    Google Scholar 

  4. P. De Forcrand, O. Philipsen, Nucl. Phys. B642, 290 (2006)

    Google Scholar 

  5. A. Andronic et al., Nucl. Phys. A834, 237 (2010); J. Cleymans et al., Phys. Rev. C73, 34905 (2006)

    Google Scholar 

  6. L. Adamczyk et al., (STAR Collaboration), arXiv:1701.07065

  7. N. Xu, (STAR Collaboration), Nucl. Phys. A931, 1c (2015)

    Google Scholar 

  8. X.F. Luo, (STAR Collaboration), PoS(CPOD2014)019, 2015, arXiv:1503.02558

  9. X.F. Luo, N. Xu, arXiv:1701.02105; S. Gupta et al., Science, 332, 1525 (2011)

  10. M.A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009)

    Google Scholar 

  11. L. Adamczyk et al., (STAR Collaboration), Phys. Rev. Lett. 112, 032302 (2014); ibid. Phys. Rev. Lett. 113, 092301 (2014)

    Google Scholar 

  12. J. Xu et al., (STAR Collaboration), arXiv:1611.07132

  13. S. He et al., Phys. Lett. B762, 296 (2016)

    Google Scholar 

  14. L. Adamczyk et al., (STAR Collaboration), Phys. Rev. Lett. 112, 162301 (2014)

    Google Scholar 

  15. A. Bzdak, V. Koch, V. Skokov, arXiv:1612.05128

  16. B. Ling, M.A. Stephanov, Phys. Rev. C93, 034915 (2016); L. Adamczyk et al., (STAR Collaboration), arXiv:1609.05102 and references therein

  17. T. Ablyazimov et al., (CBM Collaboration), EJPA, arXiv:1607.01487

Download references

Acknowledgements

I thank Drs. P. Braun-Munzinger, V. Koch, X.F. Luo, B. Mohanty, J. Stroth and J. Xu, for inspiring discussions. This work was supported in part by the China MoST No.2015CB856901 and US DE-AC03-76SF00098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nu Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, N. (2018). Exploration of the QCD Phase Diagram at Finite Baryon Density Region: Recent Results from RHIC Beam Energy Scan-I. In: Naimuddin, M. (eds) XXII DAE High Energy Physics Symposium . Springer Proceedings in Physics, vol 203. Springer, Cham. https://doi.org/10.1007/978-3-319-73171-1_1

Download citation

Publish with us

Policies and ethics