Skip to main content

Cellulose Activation and Dissolution

  • Chapter
  • First Online:
Book cover Cellulose Derivatives

Abstract

It is well known that controlling the reactions of cellulose, e.g., its transformation into esters or ethers, is not trivial. The products obtained may exhibit unpredictable, and often irreproducible DS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Philipp B (1983) Role of supermolecular structure and morphology in heterogeneous reactions of cellulose. Acta Chim Hung 112:445–459

    CAS  Google Scholar 

  2. Shimizu Y, Kimura K, Masuda S, Hayashi J (1993) Supermolecular structure of cellulose suggested from the behavior of chemical reactions. In: Kennedy JF, Phillips GO, Williams PA (eds) Cellulosics: Chemical, Biochemical and Material Aspects. Ellis Horwood, Chichester, pp 67–73

    Google Scholar 

  3. Yamazaki S, Nakao O (1974) Dissolution of cellulose in organic solvents in the presence of small amounts of amines and sulfur dioxide. Sen’i Gakkaishi 30:T234–T244

    Google Scholar 

  4. Kamide K, Okajima K, Matsui T, Kowsaka K (1984) Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and carbon-13 NMR. Polym J 16:857–866

    Article  CAS  Google Scholar 

  5. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, vol 1. Wiley-VCH, Weinheim, p 130

    Book  Google Scholar 

  6. Ishii D, Tatsumi D, Matsumoto T (2003) Effect of solvent exchange on the solid structure and dissolution behavior of cellulose. Biomacromol 4:1238–1243

    Article  CAS  Google Scholar 

  7. Philipp HJ, Nelson ML, Ziifle HM (1947) Crystallinity of cellulose fibers as determined by acid hydrolysis. Text Res J 17:585–596

    Article  CAS  Google Scholar 

  8. Ishii D, Tatsumi D, Matsumoto T (2008) Effect of solvent exchange on the supramolecular structure, the molecular mobility and the dissolution behavior of cellulose in LiCl/DMAc. Carbohydr Res 343:919–928

    Article  CAS  Google Scholar 

  9. Sepall O, Mason SG (1961) Hydrogen exchange between cellulose and water. II. Interconversion of accessible and inaccessible regions. Can J Chem 39:1944–1955

    Article  CAS  Google Scholar 

  10. Ogihara Y, Smith RL Jr, Inomata H, Arai K (2005) Direct observation of cellulose dissolution in subcritical and supercritical water over a wide range of water densities (550-1000 kg/m3). Cellulose 12:595–606

    Article  CAS  Google Scholar 

  11. Lowell S, Shields JE (1991) Powder surface area and porosity, 3rd edn. Chapman and Hall, London, p 52

    Google Scholar 

  12. Bismarck A, Aranberri-Askargorta I, Springer J, Lampke T, Wielage B, Stamboulis A, Shenderovich I, Limbach HH (2002) Surface characterization of flax, hemp and cellulose fibers; surface properties and the water uptake behavior. Polym Compos 23:872–894

    Article  CAS  Google Scholar 

  13. Jeffries R (1960) The sorption of water by cellulose and eight other textile polymers. I. The sorption of water by celluloses below 100°. J Text Inst 51:T339–T374

    Article  CAS  Google Scholar 

  14. Jeffries R (1960) Sorption of water by cellulose and eight other textile polymers. III. Sorption of water vapor by textile polymers at 120 and 150°. J Text Inst 51:T441–T457

    Article  CAS  Google Scholar 

  15. Park S, Venditti RA, Jameel H, Pawlak JJ (2006) Hard to remove water in cellulose fibers characterized by high resolution thermogravimetric analysis—methods development. Cellulose 13:23–30

    Article  CAS  Google Scholar 

  16. Merchant MV (1957) A study of water-swollen cellulose fibers which have been liquid-exchanged and dried from hydrocarbons. Tappi 40:771–781

    CAS  Google Scholar 

  17. Porter BR, Rollins ML (1972) Changes in porosity of treated lint cotton fibers. I. Purification and swelling treatments. J Appl Polym Sci 16:217–236

    Article  CAS  Google Scholar 

  18. Arthur JC Jr (1966) Photooxidation of chemically modified celluloses and free radical formation. In: Phillips GO (ed) Energy transfer in radiation processes. Elsevier, Amesterdam, pp 29–36

    Google Scholar 

  19. Mihranyan A, Llagostera AP, Karmhag R, Stromme M, Ek R (2004) Moisture sorption by cellulose powders of varying crystallinity. Int J Pharm 269:433–442

    Article  CAS  Google Scholar 

  20. Tanczos I, Borsa J, Sajó I, László K, Juhász ZA, Tóth T (2000) Effect of tetramethylammonium hydroxide on cotton cellulose compared to sodium hydroxide. Macromol Chem Phys 201:2550–2556

    Article  CAS  Google Scholar 

  21. Strømme M, Mihranyan A, Ek R, Niklasson GA (2003) Fractal dimension of cellulose powders analyzed by multilayer BET adsorption of water and nitrogen. J Phys Chem B 107:14378–14382

    Article  CAS  Google Scholar 

  22. Kocherbitov V, Ulvenlund S, Kober M, Jarring K, Arnebrant T (2008) Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry. J Phys Chem B 112:3728–3734

    Article  CAS  Google Scholar 

  23. Adolphs J, Setzer JM (1998) Description of gas adsorption isotherms on porous and dispersed systems with the excess surface work model. J Colloid Interface Sci 207:349–354

    Article  CAS  Google Scholar 

  24. Belgacem MN, Blayo A, Gandini A (1996) Surface characterization of polysaccharides, lignins, printing ink pigments, and ink fillers by inverse gas chromatography. J Colloid Interface Sci 182:431–436

    Article  CAS  Google Scholar 

  25. Inglesby MK, Zeronian SH (1996) The accessibility of cellulose as determined by dye adsorption. Cellulose 3:165–181

    Article  CAS  Google Scholar 

  26. Inglesby MK, Zeronian SH (2002) Direct dyes as molecular sensors to characterize cellulose substrates. Cellulose 9:19–29

    Article  CAS  Google Scholar 

  27. Fidale LC, Ruiz N, Heinze T, El Seoud OA (2008) Cellulose swelling by aprotic and protic solvents: what are the similarities and differences? Macromol Chem Phys 209:1240–1254

    Article  CAS  Google Scholar 

  28. Baird MS, Hamlin JD, O’Sullivan A, Whiting A (2008) An insight into the mechanism of the cellulose dyeing process: molecular modelling and simulations of cellulose and its interactions with water, urea, aromatic azo-dyes and aryl ammonium compounds. Dyes Pigm 76:406–416

    Google Scholar 

  29. Hanley SJ, Giasson J, Revol J-F, Gray DG (1992) Atomic force microscopy of cellulose microfibrils: comparison with transmission electron microscopy. Polymer 33:4639–4642

    Article  CAS  Google Scholar 

  30. Zollinger H (1960) Dyeing mechanisms and molecular shape. Am Dyest Rep 49:29–36

    CAS  Google Scholar 

  31. Rowland SP (1979) Solid-liquid interactions: inter- and intracrystalline reactions in cellulose fibers. In: Happey F (ed) Applied Fibre Science, vol 2. Academic Press, London, pp 205–237

    Google Scholar 

  32. Stone JE, Treiber E, Abrahamson B (1969) Accessibility of regenerated cellulose to solute molecules of a molecular weight of 180 to 2 × 106. Tappi 52:108–110

    CAS  Google Scholar 

  33. Scallan AM, Carles JE (1972) Correlation of the water retention value with the fiber saturation point. Sven Papperstidn 75:699–703

    CAS  Google Scholar 

  34. Stone JE, Scallan AM, Donefer E, Ahlgren E (1969) Digestibility as a simple function of a molecule of similar size to a cellulase enzyme. Adv Chem Ser 95:219–241

    Article  CAS  Google Scholar 

  35. Nyqvist H (1983) Saturated salt solutions for maintaining specified relative humidities. Int J Pharm Technol Prod Manuf 4:47–48

    CAS  Google Scholar 

  36. ASTM E104—02 (2012) Standard practice for maintaining constant relative humidity by means of aqueous solutions

    Google Scholar 

  37. Rahman MS, Matin N, Majid MA, Sheikh MAS (1997) Swelling characteristics of jute fiber with water and different organic and inorganic vapors and liquids. Cellul Chem Technol 31:87–92

    CAS  Google Scholar 

  38. Arlabosse P, Rodier E, Ferrasse JH, Chavez S, Lecomte D (2003) Comparison between static and dynamic methods for sorption isotherm measurements. Drying Technol 21:479–497

    Article  CAS  Google Scholar 

  39. Kohler R, Alex R, Brielmann R, Ausperger B (2006) A new kinetic model for water sorption isotherms of cellulosic materials. Macromol Symp 244:89–96

    Article  CAS  Google Scholar 

  40. El Seoud OA, Fidale LC, Ruiz N, D’Almeida MLO, Frollini E (2008) Cellulose swelling by protic solvents: which properties of the biopolymer and the solvent matter? Cellulose 15:371–392

    Article  CAS  Google Scholar 

  41. Krässig HA (1993) Cellulose: structure, accessibility and reactivity. Gordon and Breach, Yverdon, p 167

    Google Scholar 

  42. O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  43. Heux L, Dinand E, Vignon MR (1999) Structural aspects in ultrathin cellulose microfibrils followed by 13C CP-MAS NMR. Carbohydr Polym 40:115–124

    Article  CAS  Google Scholar 

  44. Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using carbon-13 NMR signal strengths. Solid State Nucl Magn Reson 15:21–29

    Article  CAS  Google Scholar 

  45. Zografi G, Kontny MJ, Yang AYS, Brenner GS (1984) Surface area and water vapor sorption of microcrystalline cellulose. Int J Pharm 18:99–116

    Article  CAS  Google Scholar 

  46. Sepall O, Mason SG (1961) Hydrogen exchange between cellulose and water. I. Measurement of accessibility. Can J Chem 39:1934–1943

    Article  CAS  Google Scholar 

  47. Jeffries R (1964) The amorphous fraction of cellulose and its relation to moisture sorption. J Appl Polym Sci 8:1213–1220

    Article  CAS  Google Scholar 

  48. Nishiyama Y, Isogai A, Okano T, Müller M, Chanzy H (1999) Intracrystalline deuteration of native cellulose. Macromolecules 32:2078–2081

    Article  CAS  Google Scholar 

  49. Tsuchikawa S, Siesler HW (2003) Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part I: Softwood. Appl Spectrosc 57:667–674

    Article  CAS  Google Scholar 

  50. Wickholm K, Hult E-L, Larsson PT, Iversen T, Lennholm H (2001) Quantification of cellulose forms in complex cellulose materials: a chemometric model. Cellulose 8:139–148

    Article  CAS  Google Scholar 

  51. Mann J, Marrinan HJ (1956) Reaction between cellulose and heavy water. I. Qualitative study by infrared spectroscopy. Trans Faraday Soc 52:481–487

    Article  CAS  Google Scholar 

  52. Schwertassek K (1931) Method for determining the degree of mercerization of cotton. Melliand Textilber 12:457–458

    CAS  Google Scholar 

  53. Bailey AV, Honold E, Skau EL (1958) Topochemical mechanisms involved in the preparation and deacetylation of partially acetylated cottons. Text Res J 28:861–873

    Article  CAS  Google Scholar 

  54. Hessler LE, Power RE (1954) The use of iodine adsorption as a measure of cellulose fiber crystallinity. Text Res J 24:822–827

    Article  CAS  Google Scholar 

  55. Nelson ML, MaresT (1965) Accessibility and lateral order distribution of the cellulose in the developing cotton fiber1. Text Res J 35:592–603

    Google Scholar 

  56. Bréguet A, Chareyron C (1952) Adsorption of iodine from its solutions by viscose rayon. Relation between orientation and crystalline state of the fibers. Meml Serv Chim Etat 37:249–263

    Google Scholar 

  57. Tanzawa H (1960) Iodine sorption on cellulose fibers. Sen-I Gakkaishi 16:373–380

    Article  CAS  Google Scholar 

  58. Doppert HL (1967) Adsorption of iodine from aqueous solutions by samples of tire yarn from regenerated cellulose. J Polym Sci Polym Phys Ed 5:263–270

    CAS  Google Scholar 

  59. Nelson ML, Rousselle MA, Cangemi SJ, Trouard P (1970) Iodine sorption test. Factors affecting reproducibility and a semimicro adaptation. Text Res J 40:872–880

    Article  CAS  Google Scholar 

  60. Jeffries R, Jones DM, Roberts JG, Selby K, Simmens SC, Warwicker JO (1969) Current ideas on the structure of cotton. Cellul Chem Technol 3:255–274

    CAS  Google Scholar 

  61. Röder T, Moosbauer J, Fasching M, Bohn A, Fink H-P, Baldinger T, Sixta H (2006) Crystallinity determination of native cellulose-comparison of analytical methods. Lenzinger Ber 86:85–89

    Google Scholar 

  62. Schwabe K, Phillip B (1955) Interaction of cellulose with tetraethylammonium hydroxide. Holzforschung 9:104–109

    Article  CAS  Google Scholar 

  63. Berger W, Keck M, Kabrelian V, Mun Song U, Phillip B, Zenke I (1989) Solution of cellulose in aprotic mixed solvents. 2. Effect of the physical structure of the cellulose on the dissolution process. Acta Polym 40:351–358

    Article  CAS  Google Scholar 

  64. Cuissinat C, Navard P (2006) Swelling and dissolution of cellulose part 1: free floating cotton and wood fibers in N-methylmorpholine-N-oxide-water mixtures. Macromol Symp 244:1–18

    Article  CAS  Google Scholar 

  65. Jayme G, Rothamel L (1948) Development of a standard centrifugal method for determining the swelling values of pulps. Papier (Bingen, Germany) 2:7–18

    Google Scholar 

  66. Schleicher H, Philipp B (1980) Effect of activation on the reactivity of cellulose. Papier (Bingen, Germany) 34:550–555

    Google Scholar 

  67. McCormick CL, Callais PA, Hutchinson BH (1985) Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide. Macromolecules 18:2394–2401

    Article  CAS  Google Scholar 

  68. McCormick CL, Callais PA (1986) Derivatization of cellulose in lithium chloride and N,N-dimethylacetamide solutions. Polym Prepr 27:91–92

    CAS  Google Scholar 

  69. McCormick CL, Callais PA (1987) Derivatization of cellulose in lithium chloride and N,N-dimethylacetamide solutions. Polymer 28:2317–2323

    Article  CAS  Google Scholar 

  70. Suzuki K, Kurata S, Ikeda I (1992) Homogeneous acetalization of cellulose in lithium chloride and dimethylacetamide. Polym Int 29:1–6

    Article  CAS  Google Scholar 

  71. Edgar KJ, Arnold KM, Blount WW, Lawniczak JE, Lowman DW (1995) Synthesis and properties of cellulose acetoacetates. Macromolecules 28:4122–4128

    Article  CAS  Google Scholar 

  72. Staudinger H, Döhle W (1942) Macromolecular compounds. CCCX. Cellulose. 85. Inclusion cellulose. J Prakt Chem (Leipzig, Germany) 161:219–240

    Google Scholar 

  73. Staudinger H, Döhle W (1953) The acetylation of inclusion celluloses. Makromol Chem 9:188–189

    Article  CAS  Google Scholar 

  74. Staudinger H, Eicher T (1953) Macromolecular compounds. CCCLXXXVI. The swelling and inclusion of cellulose with lower fatty acids. Makromol Chem 10:254–260

    Article  CAS  Google Scholar 

  75. Buschle-Diller G, Zeronian SH (1992) Enhancing the reactivity and strength of cotton fibers. J Appl Polym Sci 45:967–979

    Article  CAS  Google Scholar 

  76. ASTM-D3616—95 (2009) Standard test method for rubber-Determination of gel, swelling index, and dilute solution viscosity

    Google Scholar 

  77. Mantanis GI, Young RA, Rowell RM (1995) Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2:1–22

    CAS  Google Scholar 

  78. Eckelt J, Richardt D, Schuster KC, Wolf BA (2010) Thermodynamic interactions of natural and of man-made cellulose fibers with water. Cellulose 17:1079–1093

    Article  CAS  Google Scholar 

  79. Philipp B, Schleicher H, Wagenknecht W (1973) The influence of cellulose structure on the swelling of cellulose in organic liquids. J Polym Sci Part C Polym Symp 42:1531–1543

    Article  Google Scholar 

  80. Thode EF, Guide RG (1959) A thermodynamic interpretation of the swelling of cellulose in organic liquids: the relations among solubility parameter, swelling, and internal surface. Tappi 42:35–39

    CAS  Google Scholar 

  81. Ramos LA, Assaf JM, El Seoud OA, Frollini E (2005) Influence of the supra-molecular structure and physico-chemical properties of cellulose on its dissolution in the lithium chloride/N,N-dimethylacetamide solvent system. Biomacromol 6:2638–2647

    Article  CAS  Google Scholar 

  82. Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319

    Article  CAS  Google Scholar 

  83. Schult T, Hjerde T, Optun OI, Kleppe PJ, Moe S (2002) Characterization of cellulose by SEC-MALLS. Cellulose 9:149–158

    Article  CAS  Google Scholar 

  84. El Seoud OA, Heinze T (2005) Organic esters of cellulose: new perspectives for old polymers. Adv Polym Sci 186:103–149

    Article  CAS  Google Scholar 

  85. Koblitz W, Kiessig H (1960) Role of water sorption in the swelling of cellulose fibers. Papier (Bingen, Germany) 14:179–185

    Google Scholar 

  86. Stone JE, Scallan AM (1968) Structural model for the cell wall of water-swollen wood pulp fibers based on their accessibility to macromolecules. Cellul Chem Technol 2:343–358

    CAS  Google Scholar 

  87. Yachi T, Hayashi J, Shimizu Y (1983) Supermolecular structure of cellulose: stepwise decrease in LODP and particle size of cellulose hydrolyzed after chemical treatment. J Appl Polym Sci: Appl Polym Symp 37:325–343

    CAS  Google Scholar 

  88. Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromol 2:410–416

    Article  CAS  Google Scholar 

  89. Davis WE, Barry AJ, Peterson FC, King AJ (1943) X-ray studies of reactions of cellulose in nonaqueous systems. II. Interaction of cellulose and primary amines. J Am Chem Soc 65:1294–1299

    Article  CAS  Google Scholar 

  90. Creely JJ, Wade RH (1978) Complexes of cellulose with sterically hindered amines. J Polym Sci Polym Lett Ed 16:477–480

    Article  CAS  Google Scholar 

  91. Barton AFM (1991) Handbook of solubility parameters and other cohesion parameters. CRC Press, Boca Raton

    Google Scholar 

  92. Hansen CM, Bjoerkman A (1998) The ultrastructure of wood from a solubility parameter point of view. Holzforschung 52:335–344

    Article  CAS  Google Scholar 

  93. Hansen CM (2004) 50 Years with solubility parameters-past and future. Prog Org Coat 51:77–84

    Article  CAS  Google Scholar 

  94. Robertson AA (1970) Interactions of liquids with cellulose. Tappi 53:1331–1339

    CAS  Google Scholar 

  95. Chitumbo K, Brown W, De Ruvo A (1974) Swelling of cellulosic gels. J Polym Sci Polym Symp 47:261–268

    Article  CAS  Google Scholar 

  96. Schleicher H (1983) Relation of cellulose swelling to the donor and acceptor numbers of the swelling agent. Acta Polym 34:63–64

    Article  CAS  Google Scholar 

  97. Mantanis GI, Young RA, Rowell RM (1994) Swelling of wood. Part 1. Swelling in water. Wood Sci Technol 28:119–134

    Article  CAS  Google Scholar 

  98. Mantanis GI, Young RA, Rowell RM (1994) Swelling of wood. Part II. Swelling in organic liquids. Holzforschung 48:480–490

    Article  CAS  Google Scholar 

  99. Gutmann V (1978) The donor-acceptor approach to molecular interaction. Plenum Press, New York

    Book  Google Scholar 

  100. Hill T, Lewicki P (2006) A comprehensive reference for science, industry and data mining: statics methods and applications. Tulsa, StatSoft

    Google Scholar 

  101. Reichardt C (2003) Solvents and solvent effects in organic chemistry, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  102. El Seoud OA (2007) Solvation in pure and mixed solvents: some recent developments. Pure Appl Chem 79:1135–1151

    Article  CAS  Google Scholar 

  103. Martins CT, Lima MS, El Seoud OA (2006) Thermo-solvatochromism of merocyanine polarity indicators in pure and aqueous solvents: relevance of solvent lipophilicity. J Org Chem 71:9068–9079

    Article  CAS  Google Scholar 

  104. Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587

    Article  CAS  Google Scholar 

  105. Drost-Hansen W (1969) Structure of water near solid interfaces. Ind Eng Chem 61:10–47

    Article  CAS  Google Scholar 

  106. Hartley ID, Kamke FA, Peemoeller H (1992) Cluster theory for water sorption in wood. Wood Sci Technol 26:83–99

    Article  CAS  Google Scholar 

  107. Baird MS, O’Sullivan AC, Banks WB (1998) A native cellulose microfibril model. Cellulose 5:89–111

    Google Scholar 

  108. Despond S, Espuche E, Cartier N, Domard A (2005) Hydration mechanism of polysaccharides: a comparative study. J Polym Sci Part B: Polym Phys 43:48–58

    Article  CAS  Google Scholar 

  109. Humeres E, Mascayano C, Riadi G, Gonzalez-Nilo F (2006) Molecular dynamics simulation of the aqueous solvation shell of cellulose and xanthate ester derivatives. J Phys Org Chem 19:896–901

    Article  CAS  Google Scholar 

  110. Ono H, Yamada H, Matsuda S, Okajima K, Kawamoto T, Iijima H (1998) Proton-NMR relaxation of water molecules in the aqueous microcrystalline cellulose suspension systems and their viscosity. Cellulose 5:231–247

    Article  CAS  Google Scholar 

  111. Smirnova LG, Grunin YB, Krasil’nikova SV, Zaverkina MA, Bakieva DR, Smirnov EV (2003) Study of the structure and sorption properties of some types of cellulose. Colloid J 65:778–781

    Google Scholar 

  112. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry. Wiley-VCH, Weinheim, p 44

    Book  Google Scholar 

  113. Borin IA, Skaf MS (1999) Molecular association between water and dimethyl sulfoxide in solution: a molecular dynamics simulation study. J Chem Phys 110:6412–6420

    Article  CAS  Google Scholar 

  114. Mizuno K, Imafuji S, Ochi T, Ohta T, Maeda S (2000) Hydration of the CH groups in dimethyl sulfoxide probed by NMR and IR. J Phys Chem B 104:11001–11005

    Article  CAS  Google Scholar 

  115. Shin DN, Wijnen JW, Engberts JBFN, Wakisaka A (2001) On the origin of microheterogeneity: a mass spectrometric study of dimethyl sulfoxide-water binary mixture. J Phys Chem B 105:6759–6762

    Article  CAS  Google Scholar 

  116. Rao VSR, Foster JF (1965) Addition complex between carbohydrates and dimethyl sulfoxide as revealed by proton magnetic resonance. J Phys Chem 69:656–658

    Article  CAS  Google Scholar 

  117. Casu B, Reggiani M, Gallo GG, Vigevani A (1966) Hydrogen bonding and conformation of D-glucose and polyglucoses in dimethyl sulfoxide solution. Tetrahedron 22:3061–3081

    Article  CAS  Google Scholar 

  118. Basedow AM, Ebert KH, Feigenbutz W (1980) Polymer-solvent interactions: dextrans in water and DMSO. Makromol Chem 181:1071–1080

    Article  CAS  Google Scholar 

  119. Fernandez-Bertran J, Reguera E, Ortiz P (2001) Spectroscopic study of the interactions of alkali fluorides with D-xylose. Spectrochim Acta, Part A 57A:2607–2615

    Article  CAS  Google Scholar 

  120. Ko H, Shim G, Kim Y (2005) Evidences that β-lactose forms hydrogen bonds in DMSO. Bull Korean Chem Soc 26:2001–2006

    Article  CAS  Google Scholar 

  121. Ardizzone S, Dioguardi FS, Mussini PR, Mussini T, Rondinini S, Vercelli B, Vertova A (1999) Batch effects, water content, and aqueous/organic solvent reactivity of microcrystalline cellulose samples. Int J Biol Macromol 26:269–277

    Article  CAS  Google Scholar 

  122. Gardner KH, Blackwell J (1974) Structure of native cellulose. Biopolymers 13:1975–2001

    Article  CAS  Google Scholar 

  123. Kolpak FJ, Blackwell J (1976) Determination of the structure of cellulose II. Macromolecules 9:273–278

    Article  CAS  Google Scholar 

  124. Northolt MG, De Vries H (1985) Tensile deformation of regenerated and native cellulose fibers. Angew Makromol Chem 133:183–203

    Article  CAS  Google Scholar 

  125. Northolt MG, Hout RVD (1985) Elastic extension of an oriented crystalline fiber. Polymer 26:310–316

    Article  CAS  Google Scholar 

  126. Kroon-Batenburg LMJ, Kroon J, Northolt MG (1986) Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibers. Polym Commun 27:290–292

    Article  CAS  Google Scholar 

  127. Kasbekar GS, Neale SM (1947) Swelling of cellulose in aqueous solutions of certain acids and salts with measurements of the vapor pressures, densities, and viscosities of these solutions Trans Faraday Soc 43:517–528

    Google Scholar 

  128. Warwicker JO, Clayton JW (1969) Reactivity of cotton after treatment in alkaline and acid swelling agents. J Appl Polym Sci 13:1037–1048

    Article  CAS  Google Scholar 

  129. Bucher H (1957) Reactions during pulp parchmentization. Papier 11:125–133

    CAS  Google Scholar 

  130. Warwicker JO (1969) Swelling of cotton in alkalis and acids. J Appl Polym Sci 13:41–54

    Article  CAS  Google Scholar 

  131. Champetier G (1933) Addition compounds of cellulose. Ann Chim Appl 20:5–96

    CAS  Google Scholar 

  132. Warwicker JO (1967) Effect of chemical reagents on the fine structure of cellulose. IV. Action of caustic soda on the fine structure of cotton and ramie J Polym Sci Part A-1 Polym Chem 5:2579–2593

    Google Scholar 

  133. Chedin J, Marsaudon A (1954) Progress in the understanding of liquid reaction mediums, and interpretation of their reactions with cellulosic fibers: mercerization-nitration. Chim Ind (Paris) 71:55–68

    CAS  Google Scholar 

  134. Knecht E, Lipschitz A (1914) Action of strong nitric acid on cotton cellulose. J Soc Chem Ind (London) 33:116–122

    Article  CAS  Google Scholar 

  135. Ellefsen Ø, Gjönnes J, Norman N (1959) Changes in the crystalline structure of cellulose caused by treatment of cotton and wood pulps with concentrated hydrochloric acid. Nor Skogind 13:411–421

    CAS  Google Scholar 

  136. Bartunek R (1953) The reactions, swelling and solution of cellulose in solutions of electrolytes. Papier (Bingen) 7:153–158

    CAS  Google Scholar 

  137. Danielowski G (1977) Ammonia in yarn processing. Lenzinger Ber 42:90–96

    CAS  Google Scholar 

  138. Troope WS (1980) Improved ammonia finishing of corduroys. Text Res J 50:162–165

    Article  CAS  Google Scholar 

  139. Heap SA (1978) Liquid ammonia treatment of cotton fabrics, especially as a pretreatment for easy-care finishing. Text Inst Ind 16:387–390

    CAS  Google Scholar 

  140. Cheek L, Struszczyk H (1980) Effect of anhydrous liquid ammonia and sodium hydroxide on viscose fabric. Cellul Chem Technol 14:893–904

    CAS  Google Scholar 

  141. Hess K, Gundermann J (1937) The influence of liquid ammonia on cellulose fibers (formation of ammonia-cellulose I, ammonia-cellulose II and cellulose III). Ber Dtsch Chem Gesellschaft B 70B:1788–1799

    Article  CAS  Google Scholar 

  142. Vigo TL (1994) Textile processing and properties. Elsevier, Amsterdam, p 43

    Google Scholar 

  143. Calamari TA Jr, Schreiber SP, Cooper AS Jr, Reeves WA (1971) Liquid ammonia modification of cellulose in cotton and polyester/cotton textiles. Text Chem Color 3:234–238

    CAS  Google Scholar 

  144. Rousselle MA, Nelson ML (1976) Reactivity and fine structure of cotton mercerized in sodium hydroxide or liquid ammonia. Text Res J 46:648–653

    Article  CAS  Google Scholar 

  145. Koura A, Schleicher H, Philipp B (1973) Swelling and dissolution of cellulose in amine-containing solvent mixtures. 6. Structural changes of cellulose caused by amines and amine solutions. Faserforsch Textiltech 24:187–194

    CAS  Google Scholar 

  146. Koura A, Lukanoff B, Philipp B, Schleicher H (1977) Preparation of alkali-soluble cyanoethyl cellulose from preactivated cellulose. Faserforsch Textiltech 28:63–65

    CAS  Google Scholar 

  147. Klenkova NI, Matveeva NA, Volkova L (1967) Effect of amines on structure and properties of cellulose fibers. IV. Effect of amines on hydrated cellulose fibers. J Appl Chem (USSR) 40:121–123

    Google Scholar 

  148. Klenkova NI, Matveeva NA, Kulakova OM, Volkova LA (1967) Additional data on the activation of cellulose by amines. J Appl Chem (USSR) 40:2113–2120

    Google Scholar 

  149. Zeronian SH (1985) In: Nevell TP, Zeronian SH (eds) Cellulose chemistry and its applications. Ellis Howard, Chichester, p 171

    Google Scholar 

  150. Warwicker JO, Wright AC (1976) Function of sheets of cellulose chains in swelling reactions on cellulose. J Appl Polym Sci 11:659–671

    Article  Google Scholar 

  151. Creely JJ, Segal L, Loeb L (1959) X-ray study of new cellulose complexes with diamines containing three, five, six, seven, and eight carbon atoms. J Polym Sci 36:205–214

    Article  CAS  Google Scholar 

  152. Warwicker JO, Jeffries R, Colbran RL, Robinson RN (1966) A review of the literature on the effect of caustic soda and other swelling agents on the fine structure of cotton. Shirley Institute Pamphlet No. 93, Shirley Institute, Didsbury, Manchester

    Google Scholar 

  153. Haydel CH, Seal JF, Janssen HJ, Vix HLE (1958) Decrystallization of cotton cellulose. Ind Eng Chem 50:74–75

    Article  CAS  Google Scholar 

  154. Loeb L, Segal L (1955) The treatment of cotton cellulose with aqueous solutions of ethylamine. Text Res J 25:516–519

    Article  CAS  Google Scholar 

  155. Nevell TP, Zeronian SH (1962) Action of ethylamine on cellulose. I. Acetylation of ethylamine-treated cotton. Polymer 3:187–194

    Article  CAS  Google Scholar 

  156. Segal L, Creely JJ (1961) The ethylenediamine-cellulose complex. III. Factors in the formation of the complex. J Polym Sci 50:451–465

    Article  CAS  Google Scholar 

  157. Hennige E (1963) The structural change in cotton caused by treatment with diamines and caustic soda. Melliand Textilber 44:1350–1352

    CAS  Google Scholar 

  158. Pasteka M (1984) Dissolution of cellulose materials in aqueous solutions of benzyltriethylammonium hydroxide. Cellul Chem Technol 18:379–387

    CAS  Google Scholar 

  159. Lieser T, Leckzych E (1936) Constitution of cellulose xanthates IV. Justus Liebigs Ann Chem 522:56–65

    Article  CAS  Google Scholar 

  160. Lieser T, Ebert R (1937) Carbohydrates. VIII. Cellulose and its solutions. Justus Liebigs Ann Chem 528:276–295

    Article  CAS  Google Scholar 

  161. Strepikheev AA, Knunyants IL, Nikolaeva NS, Mogilevskii EM (1957) Solution of cellulose in quaternary ammonium bases. Izv Akad Nauk SSSR Ser Khim 750–753

    Google Scholar 

  162. Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from Nmmo solutions. Prog Polym Sci 26:1473–1524

    Article  CAS  Google Scholar 

  163. Chavan RB, Patra AK (2004) Development and processing of lyocell. Indian J Fibre Text Res 29:483–492

    CAS  Google Scholar 

  164. Berger W (1994) Possibilities and limits of alternative methods for cellulose dissolution and regeneration. Lenzinger Ber 74:11–18

    CAS  Google Scholar 

  165. Eibl M, Eichinger D, Lotz C (1997) Lyocell—the cellulosic fiber chameleon. Lenzinger Ber 76:89–91

    CAS  Google Scholar 

  166. Taylor J (1998) Tencel—a unique cellulosic fiber. J Soc Dyers Colour 114:191–193

    Article  CAS  Google Scholar 

  167. Woodings CR (1995) The development of advanced cellulosic fibres. Int J Biol Macromol 17:305–309

    Article  CAS  Google Scholar 

  168. Chanzy H, Paillet M, Peguy A (1986) Spinning of exploded wood from amine oxide solutions. Polym Commun 27:171–172

    CAS  Google Scholar 

  169. Chanzy H, Paillet M, Peguy A, Vuong R (1987) Dissolution and spinning of exploded wood in amine oxide systems. In: Kennedy JF, Phillips GO, Williams PA (eds) Wood Cellul 573–579

    Google Scholar 

  170. Heinze T, Liebert T, Klüfers P, Meister F (1999) Carboxymethylation of cellulose in unconventional media. Cellulose 6:153–165

    Article  CAS  Google Scholar 

  171. Gao M, Chen S, Han J, Luo D, Zhao L, Zheng Q (2010) Effects of a pretreatment with N-methylmorpholine-N-oxide on the structures and properties of ramie. J Appl Polym Sci 117:2241–2250

    Article  CAS  Google Scholar 

  172. Faelt S, Wagberg L, Vesterlind E-L, Larsson PT (2004) Model films of cellulose II—improved preparation method and characterization of the cellulose film. Cellulose 11:151–162

    Article  CAS  Google Scholar 

  173. Le Moigne N, Bikard J, Navard P (2010) Rotation and contraction of native and regenerated cellulose fibers upon swelling and dissolution: the role of morphological and stress unbalances. Cellulose 17:507–519

    Article  CAS  Google Scholar 

  174. Lu Y, Wu Y (2008) Influence of coagulation bath on morphology of cellulose membranes prepared by NMMO method. Front Chem Eng China 2:204–208

    Article  CAS  Google Scholar 

  175. Mao Z, Cao Y, Jie X, Kang G, Zhou M, Yuan Q (2010) Dehydration of isopropanol–water mixtures using a novel cellulose membrane prepared from cellulose/N-methylmorpholine-N-oxide/H2O solution. Sep Purif Technol 72:28–33

    Article  CAS  Google Scholar 

  176. Jeihanipour A, Karimi K, Taherzadeh MJ (2010) Enhancement of ethanol and biogas production from high-crystalline cellulose by different modes of NMO pretreatment. Biotechnol Bioeng 105:469–476

    Article  CAS  Google Scholar 

  177. Mercer J (1851) Improvement in chemical process for fulling vegetable and other textures. US 8303 A, 19 Aug 1851

    Google Scholar 

  178. Gardner WM (1898) Properties of mercerized cotton. J Soc Dyers Colour 14:186–190

    Article  Google Scholar 

  179. Bechter D (1981) Mercerization of cotton. Dtsch Faerber-Kal 85:82–100

    CAS  Google Scholar 

  180. Iyer ND (2000) Cotton—the king of fibres -V. Colourage 47:75–76

    CAS  Google Scholar 

  181. Saravanan D, Ramachandran T (2007) Forgotten fundamentals of mercerisation. Asian Dyer 4:35–40

    CAS  Google Scholar 

  182. Warwicker JO (1971) Cellulose swelling. In Bikales NM, Segal L (ed) Cellulose and cellulose derivatives, Part IV. Wiley-Interscience, New York, pp 344–349

    Google Scholar 

  183. Tripp VW, Moore AT, Rollins ML (1954) A microscopical study of the effects of some typical chemical environments on the primary wall of the cotton fiber. Text Res J 24:956–970

    Article  CAS  Google Scholar 

  184. Rollins ML (1954) Some aspects of microscopy in cellulose research. Anal Chem 26:718–724

    Article  CAS  Google Scholar 

  185. Chanzy HD, Roche EJ (1976) Fibrous transformations of Valonia cellulose I into cellulose II. Appl Polym Symp 28:701–711

    CAS  Google Scholar 

  186. Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I → cellulose II. Cellulose 9:7–18

    Article  CAS  Google Scholar 

  187. Roelofsen PA (1959) The plant cell wall. Gebrüder Bornträger, Berlin-Nikolassee, p 126

    Google Scholar 

  188. Saito G (1939) Das Verhalten der Zellulose in Alkalilösungen. 1. Mitteilung. Kolloid-Beih 49:365–454

    CAS  Google Scholar 

  189. Colom X, Carrillo F (2002) Crystallinity changes in lyocell and viscose-type fibres by caustic treatment. Eur Polym J 38:2225–2230

    Article  CAS  Google Scholar 

  190. Nishimura H, Sarko A (1987) Mercerization of cellulose. IV. Mechanism of mercerization and crystallite sizes. J Appl Polym Sci 33:867–874

    Article  CAS  Google Scholar 

  191. Irklei VM, Kleiner YY, Vavrinyuk OS, Gal’braikh LS (2005) Kinetics of degradation of cellulose in basic medium. Fibre Chem 37:452–458

    Google Scholar 

  192. Shibazaki H, Kuga S, Okano T (1997) Mercerization and acid hydrolysis of bacterial cellulose. Cellulose 4:75–87

    Article  CAS  Google Scholar 

  193. Yokota H, Sei T, Horii F, Kitamaru R (1990) Carbon-13 CPMAS NMR study on alkali cellulose. J Appl Polym Sci 41:783–791

    Article  CAS  Google Scholar 

  194. Dolmetsch H (1970) Regular physical changes of the fibrillar-structure in spun fibers of cellulose and synthetic polymers. Melliand Textilber 51:182–190

    CAS  Google Scholar 

  195. Brown RM Jr, Haigler CH, Suttie J, White AR, Roberts E, Smith C, Itoh T, Cooper K (1983) The biosynthesis and degradation of cellulose. J Appl Polym Sci: Appl Polym Symp 37:33–78

    CAS  Google Scholar 

  196. Haigler CH (1985) The functions and biogenesis of native cellulose. In Nevell TP, Zeronian SH (eds) Cellulose chemistry and its applications. Ellis Horwood, Chichester, UK, pp 30–83

    Google Scholar 

  197. Nishiyama Y, Kuga S, Okano T (2000) Mechanism of mercerization revealed by X-ray diffraction. J Wood Sci 46:452–457

    Article  CAS  Google Scholar 

  198. Heuser E, Bartunek R (1925) Alkali cellulose II. Cellul-Chem 6:19–26

    CAS  Google Scholar 

  199. Zeronian SH, Cabradilla KE (1972) Action of alkali metal hydroxides on cotton. J Appl Polym Sci 16:113–128

    Article  CAS  Google Scholar 

  200. Voronova MI, Petrova SN, Lebedeva TN, Ivanova ON, Prusov AN, Zakharov AG (2004) Changes in the structure of flax cellulose induced by solutions of lithium, sodium, and potassium hydroxides. Fibre Chem 36:408–412

    Article  CAS  Google Scholar 

  201. Cotton FA, Wilkenson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New York, p 92

    Google Scholar 

  202. Mansikkamaeki P, Lahtinen M, Rissanen K (2007) The conversion from cellulose I to cellulose II in NaOH mercerization performed in alcohol-water systems: an X-ray powder diffraction study. Carbohydr Polym 68:35–43

    Article  CAS  Google Scholar 

  203. Moharram MA, Mahmoud OM (2007) X-ray diffraction methods in the study of the effect of microwave heating on the transformation of cellulose I into cellulose II during mercerization. J Appl Polym Sci 105:2978–2983

    Article  CAS  Google Scholar 

  204. Vieweg W (1924) The absorption of sodium hydroxide from solutions by cellulose. Angew Chem 37:1008–1010

    Article  CAS  Google Scholar 

  205. Leighton A (1916) Adsorption of caustic soda by cellulose. J Phys Chem 20:32–50

    Article  CAS  Google Scholar 

  206. Coward HF, Spencer L (1923) Efficacy of a centrifuge for removing surface liquids from cotton hairs. J Text Inst 14:28–32T

    Article  CAS  Google Scholar 

  207. Marsh PB, Barker HD, Kerr T, Butler ML (1950) Wax content as related to surface area of cotton fibers. Text Res J 20:288–297

    Article  Google Scholar 

  208. Neale SM (1929) Swelling of cellulose and its affinity relations with aqueous solutions. I. Experiments on the behavior of cotton cellulose and regenerated cellulose in sodium hydroxide solution, and their theoretical interpretation. J Text Inst 20:373–400T

    Article  CAS  Google Scholar 

  209. Hess K, Trogus C, Schwarzkopf O (1932) Alkali cellulose. II. Phase-theory treatment of gel reactions. Z Phys Chem (Leipzig, Germany) A162:187–215

    Google Scholar 

  210. Fengel D (1994) FTIR spectroscopic studies on the heterogeneous transformation of cellulose I into cellulose II. Acta Polym 45:319–324

    Article  CAS  Google Scholar 

  211. Gilbert RD, Kadla JF (1998) Polysacchrides—Cellulose In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, Heidelberg, pp 47–95

    Google Scholar 

  212. Schenzel K, Fischer S (2001) NIR FT Raman spectroscopy—a rapid analytical tool for detecting the transformation of cellulose polymorphs. Cellulose 8:49–57

    Article  CAS  Google Scholar 

  213. Jähn A, Schröder MW, Füting M, Schenzel K, Diepenbrock W (2002) Characterization of alkali treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy. Spectrochim Acta, Part A 58A:2271–2279

    Article  Google Scholar 

  214. Kunze J, Ebert A, Frigge K, Philipp B (1981) Sodium-23 NMR investigation of the sodium bond in the treatment of cotton with aqueous sodium hydroxide. Acta Polym 32:179–181

    Article  CAS  Google Scholar 

  215. Kunze J, Schröter B, Scheler G, Philipp B (1983) High-resolution solid-state carbon-13 NMR studies of the formation of alkali cellulose from different treated celluloses. Acta Polym 34:248–254

    Article  CAS  Google Scholar 

  216. Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762

    Article  CAS  Google Scholar 

  217. Jayme G (1978) New publications about applicabilities of EWNN and cadoxene in cellulose chemistry. Papier (Bingen, Germany) 32:145–149

    Google Scholar 

  218. Hoenich NA, Woffidin C, Stamp S, Roberts SJ, Turnbull J (1997) Synthetically modified cellulose: an alternative to synthetic membranes for use in haemodialysis. Biomaterials 18:1299–1303

    Article  CAS  Google Scholar 

  219. Burchard W, Habermann N, Kluefers P, Seger B, Wilhelm U (1994) Polyol-metal complexes. 7. Cellulose in Schweizer’s reagent: a stable, polymeric metal complex with high chain rigidity. Angew Chem 106:936–939

    Article  CAS  Google Scholar 

  220. Gadd KF (1982) A new solvent for cellulose. Polymer 23:1867–1869

    Article  CAS  Google Scholar 

  221. Traube W (1912) Behavior of metallic hydroxides to alkylenediamino solutions. Ber Dtsch Chem Ges 44:3319–3324

    Article  CAS  Google Scholar 

  222. Bain AD (1980) An NMR-study of the interactions between cadoxen and saccharides. Carbohydr Res 84:1–12

    Article  CAS  Google Scholar 

  223. Nehls I, Wagenknecht W, Philipp B (1995) Carbon-13 NMR spectroscopic studies of cellulose in various solvent systems. Cellul Chem Technol 29:243–251

    CAS  Google Scholar 

  224. Burger J, Kettenbach G, Klüfers P (1995) Coordination equilibria in transition-metal based cellulose solvents. Macromol Symp 95:113–126

    Article  Google Scholar 

  225. Ahlrichs R, Ballauff M, Eichkorn K, Hanemann O, Kettenbach G, Klufers P (1998) Polyol metal complexes. Part 30. Aqueous ethylenediamine dihydroxo palladium(II): A coordinating agent for low- and high-molecular weight carbohydrates. Chem Eur J 4:835–844

    Article  CAS  Google Scholar 

  226. Saalwächter K, Burchard W, Klüfers P, Kettenbach G, Mayer P, Klemm D, Dugarmaa S (2000) Cellulose solutions in water containing metal complexes. Macromolecules 33:4094–4107

    Article  CAS  Google Scholar 

  227. Kamide K, Yasuda K, Matsui T, Okajima K, Yamashiki T (1990) Structural change in alkali-soluble cellulose solid during its dissolution into aqueous alkaline solution. Cellul Chem Technol 24:23–31

    CAS  Google Scholar 

  228. Isogai A (1997) NMR analysis of cellulose dissolved in aqueous NaOH solutions. Cellulose 4:99–107

    Article  CAS  Google Scholar 

  229. Egal M, Budtova T, Navard P (2007) Structure of aqueous solutions of microcrystalline cellulose/sodium hydroxide below 0 °C and the limit of cellulose dissolution. Biomacromol 8:2282–2287

    Article  CAS  Google Scholar 

  230. Lang H, Laskowski I (1991) Pulp solubility in sodium hydroxide. Cellul Chem Technol 25:143–153

    CAS  Google Scholar 

  231. Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/Urea aqueous solution. Biomacromol 7:183–189

    Article  CAS  Google Scholar 

  232. Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548

    Article  CAS  Google Scholar 

  233. Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351

    Article  CAS  Google Scholar 

  234. Qi H, Chang C, Zhang L (2008) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose 15:779–787

    Article  CAS  Google Scholar 

  235. Cai J, Zhang L, Chang C, Cheng G, Chen X, Chu B (2007) Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature. ChemPhysChem 8:1572–1579

    Article  CAS  Google Scholar 

  236. Liu S, Zhang L (2009) Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution. Cellulose 16:189–198

    Article  CAS  Google Scholar 

  237. Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromol 9:269–277

    Article  CAS  Google Scholar 

  238. Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide-urea solution. Chemsuschem 1:149–154

    Article  CAS  Google Scholar 

  239. Liebner F, Haimer E, Wendland M, Neouze MA, Schlufter K, Miethe P, Heinze T, Potthast A, Rosenau T (2010) Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels. Macromol Biosci 10:349–352

    Article  CAS  Google Scholar 

  240. Philipp B (1993) Organic solvents for cellulose as a biodegradable polymer and their applicability for cellulose spinning and derivatization. J Macromol Sci Pure Appl Chem A30:703–714

    Article  CAS  Google Scholar 

  241. Wang Z, Yokoyama T, Chang H-M, Matsumoto Y (2009) Dissolution of beech and spruce milled woods in LiCl/DMSO. J Agric Food Chem 57:6167–6170

    Article  CAS  Google Scholar 

  242. El Seoud OA, Nawaz H, Arêas EPG (2013) Chemistry and applications of polysaccharide solutions in strong electrolytes/dipolar aprotic solvents: an overview. Molecules 18:1270–1313

    Article  CAS  Google Scholar 

  243. Striegel AM (1997) Theory and applications of DMAC/LICL in the analysis of polysaccharides. Carbohydr Polym 34:267–274

    Article  CAS  Google Scholar 

  244. Strlic M, Kolar J (2003) Size exclusion chromatography of cellulose in LiCl/N,N-dimethylacetamide. J Biochem Biophys Methods 56:265–279

    Article  CAS  Google Scholar 

  245. Zugenmaier P (2004) Characterization and physical properties of cellulose acetates. Macromol Symp 208:81–166

    Article  CAS  Google Scholar 

  246. Callais PA (1986) Derivatzation and characterization of cellulose in lithium chloride and N,N-dimethylacetamide solutions. Ph.D. thesis, University of Southern Mississippi, University Microfilms, DA8626439, CAN 106:121612

    Google Scholar 

  247. Klemm D, Phillip B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, vol 1. Wiley-VCH, Weinheim

    Book  Google Scholar 

  248. Krässig H, Schurz J, Steadman RG, Schliefer K, Albrecht W, Mohring M, Schlosser H (2008) Cellulose. Ullmann’s fibers, 1. Wiley-VCH, Weinheim, pp 335–389

    Google Scholar 

  249. Ibrahim AA, Nada AMA, Hagemann U, El Seoud OA (1996) Preparation of dissolving pulp from sugar cane bagasse, and its acetylation under homogeneous solution condition. Holzforschung 50:221–225

    Article  CAS  Google Scholar 

  250. Dupont A-L (2003) Cellulose in lithium chloride/N,N-dimethylacetamide, optimization of a dissolution method using paper substrate and stability of the solutions. Polymer 44:4117–4126

    Article  CAS  Google Scholar 

  251. Ekmanis JL (1987) Gel permeation chromatographic analysis of cellulose. Am Lab News 19:10–11

    CAS  Google Scholar 

  252. Tosh B, Saikia CN, Dass NN (2000) Homogeneous esterification of cellulose in the lithium chloride-N,N-dimethylacetamide solvent system: effect of temperature and catalyst. Carbohydr Res 327:345–352

    Article  CAS  Google Scholar 

  253. Regiani AM, Frollini E, Marson GA, Arantes GM, El Seoud OA (1999) Some aspects of acylation of cellulose under homogeneous solution conditions. J Polym Sci Part A: Polym Chem 37:1357–1363

    Article  CAS  Google Scholar 

  254. Rosenau T, Potthast A, Kosma P (2006) Trapping of reactive intermediates to study reaction mechanisms in cellulose chemistry. Adv Polym Sci 205:153–197

    Article  CAS  Google Scholar 

  255. Falmagne JB, Escudero J, Taleb-Sahraoui S, Ghosez L (1981) Cyclobutanone and cyclobutenone derivatives by reaction of tertiary amides with alkenes and alkynes. Angew Chem 93:926–931

    Article  CAS  Google Scholar 

  256. Marson GA (1999) Acylation of cellulose in homogeneous medium, M.Sc. thesis, University of São Paulo, Brazil

    Google Scholar 

  257. Marson GA, El Seoud OA (1999) A novel, efficient procedure for acylation of cellulose under homogeneous solution conditions. J Appl Polym Sci 74:1355–1360

    Article  CAS  Google Scholar 

  258. El Seoud OA, Marson GA, Ciacco GT, Frollini E (2000) An efficient, one-pot acylation of cellulose under homogeneous reaction conditions. Macromol Chem Phys 201:882–889

    Article  Google Scholar 

  259. Heinze T, Dicke R, Koschella A, Kull A-H, Klohr E-A, Koch W (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201:627–631

    Article  CAS  Google Scholar 

  260. Köhler S, Heinze T (2007) New solvents for cellulose: Dimethyl sulfoxide/ammonium fluorides. Macromol Biosci 7:307–314

    Article  CAS  Google Scholar 

  261. Casarano R, Pires PAR, El Seoud OA (2014) Acylation of cellulose in a novel solvent system: solution of dibenzyldimethylammonium fluoride in DMSO. Carbohydr Polym 101:444–450

    Article  CAS  Google Scholar 

  262. Elsemongy MM, Reicha FM (1986) Absolute electrode potentials in dimethyl sulfoxide-water mixtures and transfer free energies of individual ions. Thermochim Acta 108:115–131

    Article  CAS  Google Scholar 

  263. Kelly CP, Cramer CJ, Truhlar DG (2007) Single-ion solvation free energies and the normal hydrogen electrode potential in methanol, acetonitrile, and dimethyl sulfoxide. J Phys Chem B 111:408–422

    Article  CAS  Google Scholar 

  264. El-Kafrawy A (1982) Investigation of the cellulose/lithium chloride/dimethylacetamide and cellulose/lithium chloride/N-methyl-2-pyrrolidinone solutions by 13C NMR spectroscopy. J Appl Polym Sci 27:2435–2443

    Article  CAS  Google Scholar 

  265. Pinkert A, Marsh KN, Pang S (2010) Reflections on the solubility of cellulose. Ind Eng Chem Res 49:11121–11130

    Article  CAS  Google Scholar 

  266. Turbak AS (1984) Recent developments in cellulose solvent systems. Tappi J 67:94–96

    CAS  Google Scholar 

  267. Gagnaire D, Saint-Germain J, Vincendon M (1983) NMR evidence of hydrogen bonds in cellulose solutions. J Appl Polym Sci: Appl Polym Symp 37:261–275

    CAS  Google Scholar 

  268. Vincendon M (1985) Proton NMR study of the chitin dissolution mechanism. Makromol Chem 186:1787–1795

    Article  CAS  Google Scholar 

  269. Petrus L, Gray DG, BeMiller JN (1995) Homogeneous alkylation of cellulose in lithium chloride/dimethyl sulfoxide solvent with dimsyl sodium activation. A proposal for the mechanism of cellulose dissolution in lithium chloride/DMSO. Carbohydr Res 268:319–323

    Article  CAS  Google Scholar 

  270. Fersht AR (1971) Acyl-transfer reactions of amides and esters with alcohols and thiols. Reference system for the serine and cysteine proteinases. Nitrogen protonation of amides and amide-imidate equilibriums. J Am Chem Soc 93:3504–3515

    Article  CAS  Google Scholar 

  271. Kresge AJ, Fitzgerald PH, Chiang Y (1974) Position of protonation and mechanism of hydrolysis of simple amides. J Am Chem Soc 96:4698–4699

    Article  CAS  Google Scholar 

  272. Cary FA, Sundberg RJ (1990) Advanced organic chemistry, 3rd edn. Part A, Plenum Press, New York, p 257

    Book  Google Scholar 

  273. Morgenstern B, Kammer H-W (1996) Solvation in cellulose-LiCl-DMAc solutions. Trends Polym Sci 4:87–92

    CAS  Google Scholar 

  274. El Seoud OA (2009) Understanding solvation. Pure Appl Chem 81:697–707

    Article  CAS  Google Scholar 

  275. Spange S, Reuter A, Vilsmeier E, Heinze T, Keutel D, Linert W (1998) Determination of empirical polarity parameters of the cellulose solvent N,N-dimethylacetamide/LiCl by means of the solvatochromic technique. J Polym Scie Part A Polym Chem 36:1945–1955

    Article  CAS  Google Scholar 

  276. Casarano R, Pires PAR, Borin AC, El Seoud OA (2014) Novel solvents for cellulose: use of dibenzyldimethylammonium fluoride/dimethyl sulfoxide (DMSO) as solvent for the etherification of the biopolymer and comparison with tetra(1-butyl)ammonium fluoride/DMSO. Ind Crops Prod 54:185–191

    Article  CAS  Google Scholar 

  277. Morgenstern B, Kammer HW, Berger W, Skrabal P (1992) 7Li-NMR study on cellulose/LiCl/N,N-dimethylacetamide solutions. Acta Polym 43:356–357

    Article  CAS  Google Scholar 

  278. Striegel AM, Timpa JD, Piotrowiak P, Cole RB (1997) Multiple neutral alkali halide attachments onto oligosaccharides in electrospray ionization mass spectrometry. Int J Mass Spectrom Ion Processes 162:45–53

    Article  CAS  Google Scholar 

  279. Östlund A, Lundberg D, Nordstierna L, Holmberg K, Nydén M (2009) Dissolution and gelation in TBAF/DMSO solutions: the roles of fluoride ions and water. Biomacromol 10:2401–2407

    Article  CAS  Google Scholar 

  280. Papanyan Z, Roth C, Wittler K, Reimann S, Ludwig R (2013) The dissolution of polyols in salt solutions and ionic liquids at molecular level: ions, counter ions, and Hofmeister effects. ChemPhysChem 14:3667–3671

    Article  CAS  Google Scholar 

  281. Marson GA, El Seoud OA (1999) Cellulose dissolution in lithium chloride/N,N-dimethylacetamide solvent system: relevance of kinetics of decrystallization to cellulose derivatization under homogeneous solution conditions. J Polym Sci, Part A: Polym Chem 37:3738–3744

    Article  CAS  Google Scholar 

  282. Wu J, Zhang J, Zhang H, He J, Ren Q, Guo M (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromol 5:266–268

    Article  CAS  Google Scholar 

  283. Silva AA, Laver ML (1997) Molecular weight characterization of wood pulp cellulose: dissolution and size exclusion chromatographic analysis. Tappi J 80:173–180

    CAS  Google Scholar 

  284. Matsumoto T, Tatsumi D, Tamai N, Takaki T (2001) Solution properties of celluloses from different biological origins in LiCl.DMAc. Cellulose 8:275–282

    Article  CAS  Google Scholar 

  285. Buchard W (1993) Macromolecular association phenomena. A neglected field of research? Trends Polym Sci 1:192–198

    Google Scholar 

  286. Ramos LA, Morgado DL, El Seoud OA, da Silva VC, Frollini E (2011) Acetylation of cellulose in LiCl-N,N-dimethylacetamide: first report on the correlation between the reaction efficiency and the aggregation number of dissolved cellulose. Cellulose 18:385–392

    Article  CAS  Google Scholar 

  287. Rinaudo M (1993) Polysaccharide characterization in relation with some original properties. J Appl Polym Sci: Appl Polym Symp 52:11–17

    Article  CAS  Google Scholar 

  288. Sjöholm E, Gustafsson K, Pettersson B, Colmsjö A (1997) Characterization of the cellulosic residues from lithium chloride/N,N-dimethylacetamide dissolution of softwood kraft pulp. Carbohydr Polym 32:57–63

    Article  Google Scholar 

  289. Ciacco GT, Morgado DL, Frollini E, Possidonio S, El Seoud OA (2010) Some aspects of acetylation of untreated and mercerized sisal cellulose. J Braz Chem Soc 21:71–77

    Article  CAS  Google Scholar 

  290. Morgenstern B, Kammer H-W (1999) On the particulate structure of cellulose solutions. Polymer 40:1299–1304

    Article  CAS  Google Scholar 

  291. Schulz L, Burchard W, Dönges R (1998) Evidence of supramolecular structures of cellulose derivatives in solution. In: Heinze T, Glasser WG (eds) Cellulose derivatives: modification, characterization, and nanostructures. ACS Symposium Series 688, Washington, DC, US, pp 218–238

    Google Scholar 

  292. Röder T, Morgenstern B, Glatter O (2000) Light-scattering studies on solutions of cellulose in N,N-dimethylacetamide/lithium chloride. Lenzinger Ber 79:97–101

    Google Scholar 

  293. Röder T, Morgenstern B, Schelosky N, Glatter O (2001) Solutions of cellulose in N,N-dimethylacetamide/lithium chloride studied by light scattering methods. Polymer 42:6765–6773

    Article  Google Scholar 

  294. Striegel AM, Timpa JD (1995) Molecular characterization of polysaccharides dissolved in N,N-dimethylacetamide-lithium chloride by gel-permeation chromatography. Carbohydr Res 267:271–290

    Article  CAS  Google Scholar 

  295. Hasegawa M, Isogai A, Onabe F (1993) Size-exclusion chromatography of cellulose and chitin using lithium chloride-N,N-dimethylacetamide as a mobile phase. J Chromatogr 635:334–337

    Article  CAS  Google Scholar 

  296. Dupont A-L, Harrison G (2004) Conformation and dn/dc determination of cellulose in N,N-dimethylacetamide containing lithium chloride. Carbohydr Polym 58:233–243

    Article  CAS  Google Scholar 

  297. Yanagisawa M, Shibata I, Isogai A (2004) SEC-MALLS analysis of cellulose using LiCl/1,3-dimethyl-2-imidazolidinone as an eluent. Cellulose 11:169–176

    Article  CAS  Google Scholar 

  298. Fidale LC, Köhler S, Prechtl MHG, Heinze T, El Seoud OA (2006) Simple, expedient methods for the determination of water and electrolyte contents of cellulose solvent systems. Cellulose 13:581–592

    Article  CAS  Google Scholar 

  299. Moran HE Jr (1956) System lithium chloride-water. J Phys Chem 60:1666–1667

    Article  CAS  Google Scholar 

  300. Chrapava S, Touraud D, Rosenau T, Potthast A, Kunz W (2003) The investigation of the influence of water and temperature on the LiCl/DMAc/cellulose system. Phys Chem Chem Phys 5:1842–1847

    Article  CAS  Google Scholar 

  301. Casarano R, El Seoud OA (2013) A novel route to obtaining stable quaternary ammonium fluoride solutions in DMSO: application in microwave-assisted acylation of cellulose. Lenzinger Ber 91:112–121

    CAS  Google Scholar 

  302. Berger W, Keck M, Philipp B (1988) On the mechanism of cellulose dissolution in non-aqueous solvents, especially in O-basic systems. Cellul Chem Technol 22:387–397

    CAS  Google Scholar 

  303. Yakimanskii AV, Bochek AM, Zubkov VA, Petropavloskie GA (1993) Quantum-chemical analysis of electronic structure parameters of dimethylacetamide and dimethylformamide complexes with lithium chloride additives. Russ J Appl Chem 66:2129–2132

    Google Scholar 

  304. Morgenstern B, Berger W (1993) Investigations about dissolution of cellulose in the lithium chloride/N,N-dimethylformamide system. Acta Polym 44:100–102

    Article  CAS  Google Scholar 

  305. Kostag M, Liebert T, El Seoud OA, Heinze T (2013) Efficient cellulose solvent: quaternary ammonium chlorides. Macromol Rapid Commun 34:1580–1584

    Article  CAS  Google Scholar 

  306. Kostag M, Liebert T, Heinze T (2014) Acetone based cellulose solvent. Macromol Rapid Commun. https://doi.org/10.1002/marc.201400211

    Google Scholar 

  307. Kuga S (1980) The porous structure of cellulose gel regenerated from calcium thiocyanate solution. J Colloid Interface Sci 77:413–417

    Article  CAS  Google Scholar 

  308. Hattori M, Shimaya Y, Saito M (1998) Structural changes in wood pulp treated by 55 wt% aqueous calcium thiocyanate solution. Polym J 30:37–42

    Article  CAS  Google Scholar 

  309. Hattori M, Koga T, Shimaya Y, Saito M (1998) Aqueous calcium thiocyanate solution as a cellulose solvent. Structure and interactions with cellulose. Polym J 30:43–48

    Article  CAS  Google Scholar 

  310. Hattori M, Shimaya Y, Saito M (1998) Solubility and dissolved cellulose in aqueous calcium and sodium thiocyanate solution. Polym J 30:49–55

    Article  CAS  Google Scholar 

  311. Fischer S, Voigt W, Fischer K (1999) The behaviour of cellulose in hydrated melts of the composition LiX · nH2O (X=I, NO3 , CH3COO, ClO4 ). Cellulose 6:213–219

    Article  CAS  Google Scholar 

  312. Fischer S, Leipner H, Brendler E, Voigt W, Fischer K (1999) Molten inorganic salt hydrates as cellulose solvents. In: El-Nokaly MA, Soini HA (eds) Polysaccharide applications, cosmetics and pharmaceuticals. ACS Symposium Series 737, Washington, DC, USA, p 143

    Google Scholar 

  313. Leipner H, Fischer S, Brendler E, Voigt W (2000) Structural changes of cellulose dissolved in molten salt hydrates. Macromol Chem Phys 201:2041–2049

    Article  CAS  Google Scholar 

  314. Krossing I, Slattery JM, Daguenet C, Dyson PJ, Oleinikova A, Weingaertner H (2006) Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies. J Am Chem Soc 128:13427–13434

    Article  CAS  Google Scholar 

  315. Gericke M, Fardim P, Heinze T (2012) Ionic liquids-promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502

    Article  Google Scholar 

  316. El Seoud OA, Koschella A, Fidale LC, Dorn S, Heinze T (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromol 8:2629–2647

    Article  CAS  Google Scholar 

  317. Liebert T, Heinze T (2008) Interactions of ionic liquids with polysaccharides 5. Solvents and reaction media for the modification of cellulose. BioResources 3:576–601

    Google Scholar 

  318. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728

    Article  CAS  Google Scholar 

  319. Cao Y, Wu J, Zhang J, Li H, Zhang Y, He J (2009) Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem Eng J 147:13–21

    Article  CAS  Google Scholar 

  320. Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids-a review. Ind Crops Prod 32:175–201

    Article  CAS  Google Scholar 

  321. Cravotto G, Gaudino EC, Boffa L, Levêque J-M, Estager J, Bonrath W (2008) Preparation of second generation ionic liquids by efficient solvent-free alkylation of N-heterocycles with chloroalkanes. Molecules 13:149–156

    Article  CAS  Google Scholar 

  322. Holbrey JD, Seddon KR (1999) The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J Chem Soc Dalton Trans 2133–2140

    Google Scholar 

  323. McEwen AB, Ngo EL, LeCompte K, Goldman JL (1999) Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications. J Electrochem Soc 146:1687–1695

    Article  CAS  Google Scholar 

  324. Fuller J, Carlin RT, Osteryoung RA (1997) The room-temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate: electrochemical couples and physical properties. J Electrochem Soc 144:3881–3886

    Article  CAS  Google Scholar 

  325. Noda A, Watanabe M (2000) Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochim Acta 45:1265–1270

    Article  CAS  Google Scholar 

  326. Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun 965–967

    Google Scholar 

  327. Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    Article  CAS  Google Scholar 

  328. Fidale LC, Possidonio S, El Seoud OA (2009) Application of 1-allyl-3-(1-butyl)imidazolium chloride in the synthesis of cellulose esters: properties of the ionic liquid, and comparison with other solvents. Macromol Biosci 9:813–821

    Article  CAS  Google Scholar 

  329. Seddon KR, Stark A, Torres M-J (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72:2275–2287

    Article  CAS  Google Scholar 

  330. Poole CF (2004) Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids. J Chromatogr A 1037:49–82

    Article  CAS  Google Scholar 

  331. Nishida T, Tashiro Y, Yamamoto M (2003) Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. J Fluorine Chem 120:135–141

    Article  CAS  Google Scholar 

  332. Aparicio S, Atilhan M, Karadas F (2010) Thermophysical properties of pure ionic liquids: review of present situation. Ind Eng Chem Res 49:9580–9595

    Article  CAS  Google Scholar 

  333. Ngo HL, LeCompte K, Hargens L, McEwen AB (2000) Thermal properties of imidazolium ionic liquids. Thermochim Acta 357–358:97–102

    Article  Google Scholar 

  334. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Disolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  335. Trulove PC, Reichert WM, De Long HC, Kline SR, Rahatekar SS, Gilman JW, Muthukumar M (2009) The structure and dynamics of silk and cellulose dissolved in ionic liquids. ECS Trans 16:111–117

    Article  CAS  Google Scholar 

  336. Kuzmina O, Sashina E, Troshenkowa S, Wawro D (2010) Dissolved state of cellulose in ionic liquids—the impact of water. Fibres Text East Eur 18:32–37

    CAS  Google Scholar 

  337. Zhang Y, Du H, Qian X, Chen EY-X (2010) Ionic liquid-water mixtures: enhanced Kw for efficient cellulosic biomass conversion. Energy Fuels 24:2410–2417

    Article  CAS  Google Scholar 

  338. Sasaki K, Nagai H, Matsumura S, Toshima K (2003) A novel greener glycosidation using an acid-ionic liquid containing a protic acid. Tetrahedron Lett 44:5605–5608

    Article  CAS  Google Scholar 

  339. Liebner F, Patel I, Ebner G, Becker E, Horix M, Potthast A, Rosenau T (2010) Thermal aging of 1-alkyl-3-methylimidazolium ionic liquids and its effect on dissolved cellulose. Holzforschung 64:161–166

    Article  CAS  Google Scholar 

  340. Stark A, Behrend P, Braun O, Müller A, Ranke J, Ondruschka B, Jastorff B (2008) Purity specification methods for ionic liquids. Green Chem 10:1152–1161

    Article  CAS  Google Scholar 

  341. Liu H, Sale KL, Holmes BM, Simmons BA, Singh S (2010) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114:4293–4301

    Article  CAS  Google Scholar 

  342. Zhang S, Sun N, He X, Lu X, Zhang X (2006) Physical properties of ionic liquids: database and evaluation. J Phys Chem Ref Data 35:1475–1517

    Article  CAS  Google Scholar 

  343. Laus G, Bentivoglio G, Schottenberger H, Kahlenberg V, Kopacka H, Roeder T, Sixta H (2005) Ionic liquids: current developments, potential and drawbacks for industrial applications. Lenzinger Ber 84:71–85

    CAS  Google Scholar 

  344. Vitz J, Erdmenger T, Haensch C, Schubert US (2009) Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem 11:417–424

    Article  CAS  Google Scholar 

  345. Nawaz H, Pires PAR, Bioni TA, Areas EPG, El Seoud OA (2014) Mixed solvents for cellulose derivatization under homogeneous conditions: kinetic, spectroscopic, and theoretical studies on the acetylation of the biopolymer in binary mixtures of an ionic liquid and molecular solvents. Cellulose 21:1193–1204

    Article  CAS  Google Scholar 

  346. Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525

    Article  CAS  Google Scholar 

  347. Moulthrop JS, Swatloski RP, Moyna G, Rogers RD (2005) High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun 1557–1559

    Google Scholar 

  348. Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun 1271–1273

    Google Scholar 

  349. Anderson JL, Ding J, Welton T, Armstrong DW (2002) Characterizing ionic liquids on the basis of multiple solvation interactions. J Am Chem Soc 124:14247–14254

    Article  CAS  Google Scholar 

  350. Reichardt C (2004) Pyridinium N-phenoxide betaine dyes and their application to the determination of solvent polarities. Part XXVIII. Pure Appl Chem 76:1903–1919

    Article  CAS  Google Scholar 

  351. Oehlke A, Hofmann K, Spange S (2006) New aspects on polarity of 1-alkyl-3-methylimidazolium salts as measured by solvatochromic probes. New J Chem 30:533–536

    Article  CAS  Google Scholar 

  352. Fortunato GG, Mancini PM, Bravo MV, Adam CG (2010) New solvents designed on the basis of the molecular-microscopic properties of binary mixtures of the type (protic molecular solvent + 1-butyl-3-methylimidazolium-based ionic liquid). J Phys Chem B 114:11804–11819

    Article  CAS  Google Scholar 

  353. Hauru LKJ, Hummel M, King AWT, Kilpeläinen I, Sixta H (2012) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromol 13:2896–2905

    Article  CAS  Google Scholar 

  354. Zakrzewska ME, Bogel-Lukasik E, Bogel-Lukasik R (2010) Solubility of carbohydrates in ionic liquids. Energy Fuels 24:737–745

    Article  CAS  Google Scholar 

  355. Novoselov NP, Sashina ES, Kuz’mina OG, Troshenkova SV (2007) Ionic liquids and their use for the dissolution of natural polymers. Russ J Gen Chem 77:1395–1405

    Google Scholar 

  356. Heinze T, Dorn S, Schoebitz M, Liebert T, Koehler S, Meister F (2008) Interactions of ionic liquids with polysaccharides—2: cellulose. Macromol Symp 262:8–22

    Article  CAS  Google Scholar 

  357. Hollóczki O, Gerhard D, Massone K, Szarvas L, Németh B, Veszprémi T, Nyulászi L (2010) Carbenes in ionic liquids. New J Chem 34:3004–3009

    Article  CAS  Google Scholar 

  358. Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69

    Article  CAS  Google Scholar 

  359. Han S, Li J, Zhu S, Chen R, Wu Y, Zhang X, Yu Z (2009) Potential applications of ionic liquids in wood related industries. BioResources 4:825–834

    CAS  Google Scholar 

  360. Chen Z, Liu S, Li Z, Zhang Q, Deng Y (2011) Dialkoxy functionalized quaternary ammonium ionic liquids as potential electrolytes and cellulose solvents. New J Chem 35:1596–1606

    Article  CAS  Google Scholar 

  361. Kong F, Song J, Cheng B, Zheng Y (2014) Synthesis and characterization of cellulose/quaternary phosphonium salt. Adv Mater Res 842:138–141

    Article  CAS  Google Scholar 

  362. Ratanakamnuan U, Atong D, Aht-Ong D (2007) Microwave assisted esterification of waste cotton fabrics for biodegradation films preparation. Adv Mater Res 26–28:457–460

    Article  Google Scholar 

  363. Semsarilar M, Perrier S (2009) Solubilization and functionalization of cellulose assisted by microwave irradiation. Aust J Chem 62:223–226

    Article  CAS  Google Scholar 

  364. Possidonio S, Fidale LC, El Seoud OA (2010) Microwave-assisted derivatization of cellulose in an ionic liquid: An efficient, expedient synthesis of simple and mixed carboxylic esters. J Polym Sci, Part A: Polym Chem 48:134–143

    Article  CAS  Google Scholar 

  365. Michael M, Ibbett RN, Howarth OW (2000) Interaction of cellulose with amine oxide solvents. Cellulose 7:21–33

    Article  CAS  Google Scholar 

  366. Maia ER, Perez S (1983) Organic solvents for cellulose. IV. Modeling of the interaction between N-methylmorpholine N-oxide (MMNO) molecules and a cellulose chain. Nov J Chim 7:89–100

    CAS  Google Scholar 

  367. Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26:1763–1837

    Article  CAS  Google Scholar 

  368. Kabrelian V, Berger W, Keck M, Philipp B (1988) Investigation of the dissolution of cellulose in binary aprotic systems. 1. Solubility and decrease in degree of polymerization of a textile pulp in binary systems with N-methylmorpholine N-oxide as one component. Acta Polym 39:710–714

    Article  CAS  Google Scholar 

  369. Wendler F, Graneß G, Büttner R, Meister F, Heinze T (2006) A novel polymeric stabilizing system for modified Lyocell solutions. J Polym Sci, Part B: Polym Phys 44:1702–1713

    Article  CAS  Google Scholar 

  370. Wendler F, Graneß G, Heinze T (2005) Characterization of autocatalytic reactions in modified cellulose/NMMO solutions by thermal analysis and UV/VIS spectroscopy. Cellulose 12:411–422

    Article  CAS  Google Scholar 

  371. Wendler F, Meister F, Heinze T (2005) Thermostability of Lyocell dopes modified with surface-active additives. Macromol Mater Eng 290:826–832

    Article  CAS  Google Scholar 

  372. Chanzy H (1982) Cellulose-amine oxide systems. Carbohydr Polym 2:229–231

    Article  CAS  Google Scholar 

  373. Eckelt J, Eich T, Röder T, Rüf H, Sixta H, Wolf BA (2009) Phase diagram of the ternary system NMMO/water/cellulose. Cellulose 16:373–379

    Article  CAS  Google Scholar 

  374. Chanzy H, Noe P, Paillet M, Smith P (1983) Swelling and dissolution of cellulose in amine oxide/water systems. J Appl Polym Sci: Appl Polym Symp 37:239–259

    CAS  Google Scholar 

  375. Bushnel F, Baley C, Grohens Y (2004) Composites materials reinforced by flax fibers correlation between adhesion of fiber/matrix and mechanicals properties of laminates according to chemicals treatments of fibers. Proc Am Soc Compos, 19th Technical Conference, MP1/1-MP1/12

    Google Scholar 

  376. Otto E, Spurlin HM, Grafflin MW (1954) ‘Cellulose and cellulose derivatives (Part 1). Interscience, New York

    Google Scholar 

  377. Noé P, Chanzy H (2008) Swelling of Valonia cellulose microfibrils in amine oxide systems. Can J Chem 86:520–524

    Article  Google Scholar 

  378. Cuissinat C, Navard P (2006) Swelling and dissolution of cellulose. Part II: free floating cotton and wood fibres in NaOH-water-additives systems. Macromol Symp 244:19–30

    Article  CAS  Google Scholar 

  379. Cuissinat C, Navard P, Heinze T (2008) Swelling and dissolution of cellulose. Part V: cellulose derivatives fibres in aqueous systems and ionic liquids. Cellulose 15:75–80

    Article  CAS  Google Scholar 

  380. Hammer RB, O’Shaughnessy ME, Strauch ER, Turbak AF (1979) Process and fiber spinning studies for the cellulose/paraformaldehyde/dimethyl sulfoxide system. J Appl Polym Sci 23:485–494

    Article  CAS  Google Scholar 

  381. Kudlacek L, Kacetl L, Kasparova Z, Krejci F (1982) Production of fibers from cellulose solutions in the dimethyl sulfoxide-paraformaldehyde system. Khim Volokna 3:47–49

    Google Scholar 

  382. Yang ZL, Wu GM, Mei CF, Gao G, Lin S, Liu HM, Zou JH (1987) Study on the manufacture of rayon fiber from a paraformaldehyde/DMSO solvent system. Cellul Chem Technol 21:493–505

    CAS  Google Scholar 

  383. Kostag M, Koehler S, Liebert T, Heinze T (2010) Pure cellulose nanoparticles from trimethylsilyl cellulose. Macromol Symp 294:96–106

    Article  CAS  Google Scholar 

  384. Koura A, Krause T (1985) Effect of weak cyanoethylation of initially wet cellulose on its reactivity after drying. Cellul Chem Technol 19:497–504

    CAS  Google Scholar 

  385. Volkert B, Wagenknecht W, Mai M (2010) Structure-property relationship of cellulose ethers: influence of the synthestic pathway on cyanoethylation. ACS Symp Ser 1033:319–341

    Article  CAS  Google Scholar 

  386. Fujimoto T, Takahashi S, Tsuji M, Miyamoto T, Inagaki H (1986) Reaction of cellulose with formic acid and stability of cellulose formate. J Polym Sci, Part C: Polym Lett 24:495–501

    Article  CAS  Google Scholar 

  387. Liebert T, Klemm D, Heinze T (1996) Synthesis and carboxymethylation of organo-soluble trifluoroacetates and formates of cellulose. J Macromol Sci, Pure Appl Chem A33:613–626

    Article  CAS  Google Scholar 

  388. Liebert T, Klemm D (1998) A new soluble and hydrolytically cleavable intermediate in cellulose functionalization. Cellulose dichloroacetate (CDCA). Acta Polym 49:124–128

    Article  CAS  Google Scholar 

  389. Klemm D, Heinze T, Philipp B, Wagenknecht W (1997) New approaches to advanced polymers by selective cellulose functionalization. Acta Polym 48:277–297

    Article  CAS  Google Scholar 

  390. Aaltonen O, Alkio M (1983) Pulp solubility in DMSO/PF [DMSO/paraformaldehyde] solvent. Effect of pulp pH. Cellul Chem Technol 17:695–698

    CAS  Google Scholar 

  391. Schroeder LR, Gentile VM, Atalla RH (1986) Nondegradative preparation of amorphous cellulose. J Wood Chem Technol 6:1–14

    Article  CAS  Google Scholar 

  392. Schnabelrauch M, Vogt S, Klemm D, Nehls I, Philipp B (1992) Readily hydrolyzable cellulose esters as intermediates for the regioselective derivatization of cellulose. 1- Synthesis and characterization of soluble, low-substituted cellulose formates. Angew Makromol Chem 198:155–164

    Article  CAS  Google Scholar 

  393. Philipp B, Wagenknecht W, Nehls I, Ludwig J, Schnabelrauch M, Kim HR, Klemm D (1990) Comparison of cellulose formate and cellulose acetate under homogeneous reaction conditions. Cellul Chem Technol 24:667–678

    CAS  Google Scholar 

  394. Bosso C, Defaye J, Gadelle A, Wong CC, Pedersen C (1982) Homopolysaccharides interaction with the dimethyl sulphoxide-paraformaldehyde cellulose solvent system. Selective oxidation of amylose and cellulose at secondary alcohol groups. J Chem Soc Perkin Trans 1579–1585

    Google Scholar 

  395. Gagnaire D, Mancier D, Vincendon M (1980) Cellulose organic solutions: a nuclear magnetic resonance investigation. J Polym Sci Polym Chem Ed 18:13–25

    Article  CAS  Google Scholar 

  396. Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry, 3rd edn. Marcel Dekker, New York, p 297, 355

    Google Scholar 

  397. Kinstle JF, Irving NM (1981) Selected chemical modifications, including grafting, on cellulosics. Org Coat Appl Polym Sci Proc 46:262–265

    CAS  Google Scholar 

  398. Morooka T, Norimoto M, Yamada T (1986) Cyanoethylated cellulose prepared by homogeneous reaction in paraformaldehyde-DMSO system. J Appl Polym Sci 32:3575–3587

    Article  CAS  Google Scholar 

  399. Tosh B, Saikia CN (1999) Homogeneous esterification of fractionated cellulose in dimethyl sulfoxide/paraformaldehyde solvent system: characterization of esterified products. Trends Carbohydr Chem 4:55–67

    CAS  Google Scholar 

  400. Vigo TL, Daigle DJ (1972) Preparation of fibrous cellulose formate by the action of thionyl chloride in N,N-dimethylformamide. Carbohydr Res 21:369–377

    Article  CAS  Google Scholar 

  401. Vigo TL, Daigle DJ, Welch CM (1972) Reaction of cellulose with chlorodimethylformiminium chloride and subsequent reaction with halide ions. J Polym Sci Polym Lett Ed 10:397–406

    Article  CAS  Google Scholar 

  402. Wagenknecht W, Philipp B, Schleicher H (1979) The esterification and dissolution of cellulose with sulfur and phosphorous acid anhydrides and acid chlorides. Acta Polym 30:108–112

    Article  CAS  Google Scholar 

  403. Liebert T, Schnabelrauch M, Klemm D, Erler U (1994) Readily hydrolyzable cellulose esters as intermediates for the regioselective derivatization of cellulose. Part II Soluble, highly substituted cellulose trifluoroacetates. Cellulose 1:249–258

    Article  CAS  Google Scholar 

  404. Hawkinson DE, Kohout E, Fornes RE, Gilbert RD (1991) Some further observations on the systems cellulose/trifluoroacetic acid/dichloromethane and cellulose triacetate/trifluoroacetic acid/dichloromethane. J Polym Sci B Polym Phys 29:1599–1605

    Article  CAS  Google Scholar 

  405. Cemeris M, Mus’ko NP, Cemeris N (1986) Mechanism of cellulose dissolution in trifluoroacetic acid. 2. Interaction of cellulose with trifluoroacetic acid. Koksnes Kim 29–33

    Google Scholar 

  406. Salin BN, Cemeris M, Mironov DP, Zatsepin AG (1991) Trifluoroacetic acid as solvent for the synthesis of cellulose esters. 1. Synthesis of triesters of cellulose and aliphatic carboxylic acids. Koksnes Kim 65–69

    Google Scholar 

  407. Salin BN, Chemeris MM, Malikova OL (1993) Trifluoroacetic acid as a solvent for the synthesis of cellulose esters. 3. Synthesis of mixed cellulose esters. Koksnes Kim 3–7

    Google Scholar 

  408. Hong YK, Hawkinson DE, Kohout E, Garrard A, Fornes RE, Gilbert RD (1989) Cellulose and cellulose triacetate mesophases. Ternary mixtures with polyesters in trifluoroacetic acid-methylene chloride solutions. ACS Symp Ser 384:184–203

    Article  CAS  Google Scholar 

  409. Cross CF, Bevan EJ, Beadle C (1892) Improvements in the dissolution of cellulose. British Patent 8,700

    Google Scholar 

  410. Mueller M (1906) British Patent 10094

    Google Scholar 

  411. Askew GJ, Bahia HS, Foxall CW, Law SJ, Street H (1998) Cellulose sponges. WO 9828360 A1

    Google Scholar 

  412. Pajulo O, Viljanto J, Lönnberg B, Hurme T, Lonnqvist K, Saukko P (1996) Viscose cellulose sponge as an implantable matrix: changes in the structure increase the production of granulation tissue. J Biomed Mater Res 32:439–446

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Heinze .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heinze, T., El Seoud, O.A., Koschella, A. (2018). Cellulose Activation and Dissolution. In: Cellulose Derivatives. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-73168-1_3

Download citation

Publish with us

Policies and ethics