Skip to main content

Isotropic Turbulence with Coupled Microstructures. II: Quantum Turbulence

  • Chapter
  • First Online:
Homogeneous Turbulence Dynamics
  • 2024 Accesses

Abstract

This chapter is devoted to Quantum turbulence in superfluid helium and Bose-Einstein condensates. Basic equations and theories related to the Gross-Pitaevski equation, the vortex filament model and the two-fluid hydrodynamic model are discussed. The links between the different theories are emphasized. Main physical mechanisms and models at both hydrodynamic and quantum scales (pseudo-Kolmogorov cascade, Kelvin waves and Kelvin wave cascade, vortex reconnection, dissipative mechanisms, mutual friction effects ...) are detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It must be kept in mind that experiments related to quantum turbulence are all performed in closed configurations, which leads to the use of a potential to account for the confinement appartus.

  2. 2.

    The Magnus force arises when a body with non-zero circulation moves into a flow. The circulation induces an asymmetry in the velocity and pressure distribution along the body surface, yielding a non-zero force.

  3. 3.

    The original HVBK model was not design for turbulence but equations used to describe quantum turbulence are formally the same.

  4. 4.

    This number denotes the number of Kelvin waves with wave number k.

  5. 5.

    It is important noticing that the most advanced theories for reconnection deals with the case of Bose–Einstein condensates, which are often extrapolated for liquid helium for which no such theory exists and only indirect measurements of vortex line length are possible.

  6. 6.

    The shortcoming relation \( E(k) = E_{KW}(k)\) is misleading and should be avoided.

  7. 7.

    As a matter of fact, most existing results dealing on Kelvin wave cascade have been obtained on very simplified configurations with one or very few vortex filaments.

  8. 8.

    At low temperatures, the quantized vortex core radius is about 77 nm in \(^3\)He-B, to be compared to 0.1 nm in \(^4\)He.

  9. 9.

    As quoted by Nemirovskii (2013), it is also important to note that the idea underlying the pile-up of kinetic energy at scales about the inter-vortex distance \(\ell \) is that the Kelvin wave energy at such scales is much smaller than the one given by the Kolmogorov spectrum, leading to a mismatch between the two spectra and the associated cascade rate. This corresponds to the flawed equality \(E(k) = E_{KW}(k)\), as discussed in Sect. 6.4.2.3. As a matter of fact, if the correct kinetic energy, i.e. the one of the velocity fluctuations induced by quantized vortices and Kelvin waves is taken into account, the mismatch and the need for a bottlneck disappear.

  10. 10.

    It is worth noting that this model for the destruction term corresponds to the type I decay discussed in Sect. 6.4.1.1. Another version of Vinen’s equation must be formulated for the type II régime, in which counterflow velocity is small with respect to the self-induced velocity and the destruction term scales as \(L_0^{5/2}\).

References

  • Adachi, H., Tsubota, M.: Numerical studies of counterflow turbulence. Velocity distribution of vortices. J. Low Temp. Phys. 158, 422–427 (2010)

    Article  ADS  Google Scholar 

  • Babuin, S., Stammeier, M., Varga, E., Rotter, M., Skrbek, L.: Quantum turbulence of bellows-driven \(^4\)He superflow: steady state. Phys. Rev. B 86, 134515 (2012)

    Article  ADS  Google Scholar 

  • Baggaley, A.W.: The sensitivity of the vortex filament method to different reconnection models. J. Low Temp. Phys. 168, 18–30 (2012)

    Article  ADS  Google Scholar 

  • Baggaley, A.W., Barenghi, C.F.: Spectrum of turbulent Kelvin-wave cascade in superfluid helium. Phys. Rev. B 83, 134509 (2011)

    Article  ADS  Google Scholar 

  • Baggaley, A.W., Barenghi, C.F., Sergeev, Y.A.: Quasiclassical and ultraquantum decay of superfluid turbulence. Phys. Rev. B 85, 060501(R) (2012)

    Article  ADS  Google Scholar 

  • Baggaley, A.W., Barenghi, C.F., Sergeev, Y.A.: Three-dimensional inverse energy transfer induced by vortex reconnections. Phys. Rev. E 89, 013002 (2014)

    Article  ADS  Google Scholar 

  • Baggaley, A.W., Laurie, J.: Kelvin-wave cascade in the vortex filament model. Phys. Rev. B 89, 014504 (2014)

    Article  ADS  Google Scholar 

  • Baggaley, A.W., Sherwin, L.K., Barenghi, C.F., Sergeev, Y.A.: Thermally and mechanically driven quantum turbulence. Phys. Rev. B 86, 104501 (2012)

    Article  ADS  Google Scholar 

  • Barenghi, C.F.: Is the Reynolds number infinite in superfluid turbulence? Physica D 237, 2195–2202 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Barenghi, C.F., Donnelly, R.J., Vinen, W.F.: Friction on quantized vortices in helium II. A review. J. Low Temp. Phys. 52, 189–247 (1983)

    Article  ADS  Google Scholar 

  • Barenghi, C.F., Donnelly, R.J., Vinen, W.F.: Thermal excitation of waves on quantized vortices. Phys. Fluids 28, 498–504 (1985)

    Article  ADS  Google Scholar 

  • Barenghi, C.F., Samuels, D.C., Kivotides, D.: Superfluid vortex reconnections. J. Low Temp. Phys. 126, 271–279 (2002)

    Article  ADS  Google Scholar 

  • Barenghi, C.F., Samuels, D.C., Kivotides, D.: Scaling laws of vortex reconnections. J. Low Temp. Phys. 136, 281–293 (2004)

    Article  ADS  Google Scholar 

  • Barenghi, C.F., Skrbek, L., Sreenivasan, K.R.: Introduction to quantum turbulence. Proc. Natl. Acad. Sci. USA 111, 4647–4652 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Berloff, N.G.: Interactions of vortices with rarefaction solitary waves in a Bose–Einstein condensate and their role in the decay of superfluid turbulence. Phys. Rev. A 69, 053601 (2004)

    Article  ADS  Google Scholar 

  • Boffetta, G., Celani, A., Dezzani, D., Laurie, J., Nazarenko, S.: Modeling Kelvin wave cascades in superfluid helium. J. Low Temp. Phys. 156, 193–214 (2009)

    Article  ADS  Google Scholar 

  • Boué, L., Dasgupta, R., Laurie, J., L’vov, V., Nazarenko, S., Procaccia, I.: Exact solution for the energy spectrum of Kelvin-wave turbulence in superfluids. Phys. Rev. B 84, 064516 (2011)

    Article  ADS  Google Scholar 

  • Briard, A., Gomez, T., Sagaut, P., Memari, S.: Passive scalar decay laws in isotropic turbulence: prandtl number effects. J. Fluid Mech. 784, 274–303 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Briard, A., Gomez, T.: Passive scalar convective-diffusive subrange for low Prandtl numbers in isotropic turbulence. Phys. Rev. E 101, 011001(R) (2015)

    Article  ADS  Google Scholar 

  • Fujimoto, K., Tsubota, M.: Bogoliubov-wave turbulence in Bose–Einstein condensates. Phys. Rev. A 91, 053620 (2015)

    Article  ADS  Google Scholar 

  • Gao, J., Guo, W., L’vov, V.S., Pomyalov, A., Skrbek, L., Varga, E., Vinen, W.F.: Decay of counterflow turbulence in superfluid \(^4\)He. JETP Lett. 103, 648–652 (2016)

    Article  ADS  Google Scholar 

  • Golov, A.I., Walmsley, P.M.: Homogeneous turbulence in superfluid \(^4\)He in the low-temperature limit: experimental progress. J. Low Temp. Phys. 156, 51–70 (2009)

    Article  ADS  Google Scholar 

  • Hänninen, R.: Dissipation enhancement from a single vortex reconnection in superfluid helium. Phys. Rev. B 88, 054511 (2013)

    Article  ADS  Google Scholar 

  • Idowu, O.C., Kivotides, D., Barenghi, C.F., Samuels, D.C.: Equation for self-consistent superfluid vortex line dynamics. J. Low Temp. Phys. 120, 269–280 (2000)

    Article  ADS  Google Scholar 

  • Jou, D., Mongiovi, M.S., Sciacca, M.: Hydrodynamic equations of anisotropic, polarized and inhomogeneous superfluid vortex tangles. Physica D 240, 249–258 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kivotides, D., Vassilicos, J.C., Samuels, D.C., Barenghi, C.F.: Kelvin-wave cascade in superfluid turbulence. Phys. Rev. Lett. 86, 3080–3083 (2001)

    Article  ADS  Google Scholar 

  • Kobayashi, M., Tsubota, M.: Kolmogorov spectrum of superfluid turbulence: numerical analysis of the Gross–Pitaevskii equation with small-scale dissipation. Phys. Rev. Lett. 94, 065302 (2006)

    Article  ADS  Google Scholar 

  • Kobayashi, M., Tsubota, M.: Thermal dissipation in quantum turbulence. Phys. Rev. Lett. 97, 145301 (2006)

    Article  ADS  Google Scholar 

  • Kobayashi, M., Tsubota, M.: Dissipation of Gross–Pitaevskii turbulence coupled with thermal excitations. J. Low Temp. Phys. 148, 275–279 (2007)

    Article  ADS  Google Scholar 

  • Koundaurova, L., L’vov, V., Pomyalov, A., Procaccia, I.: Structure of a quantum vortex tangle in \(^4\)He counterflow turbulence. Phys. Rev. B 89, 014502 (2014)

    Article  ADS  Google Scholar 

  • Koundaurova, L., Nemirovskii, S.K.: Numerical study of decay of vortex tangles in superfluid helium at zero temperature. Phys. Rev. B 86, 134506 (2012)

    Article  ADS  Google Scholar 

  • Kozik, E.V., Svistunov, B.V.: Kelvin-wave cascade and decay of superfluid turbulence. Phys. Rev. Lett. 92, 035301 (2004)

    Article  ADS  Google Scholar 

  • Kozik, E.V., Svistunov, B.V.: Scale-separation scheme for simulating superfluid turbulence: Kelvin-wave cascade. Phys. Rev. Lett. 94, 025301 (2005a)

    Article  ADS  Google Scholar 

  • Kozik, E.V., Svistunov, B.V.: Vortex-phonon interaction. Phys. Rev. B 72, 172505 (2005b)

    Article  ADS  Google Scholar 

  • Kozik, E.V., Svistunov, B.V.: Kolmogorov and Kelvin-wave cascades of superfluid turbulence at T = 0: what lies between. Phys. Rev. B 77, 060502(R) (2008a)

    Article  ADS  Google Scholar 

  • Kozik, E.V., Svistunov, B.V.: Scanning superfluid-turbulence cascade by its low-temperature cutoff. Phys. Rev. Lett. 100, 195302 (2008b)

    Article  ADS  Google Scholar 

  • Kozik, E.V., Svistunov, B.V.: Theory of decay of superfluid turbulence in the low-temperature limit. J. Low Temp. Phys. 156, 215–267 (2009)

    Article  ADS  Google Scholar 

  • Landau, L.: The theory of superfluidity of helium II. J. Phys. – USSR 5, 71–90 (1941)

    Google Scholar 

  • Laurie, J., L’vov, V.S., Nazarenko, S., Rudenko, O.: Interaction of Kelvin waves and nonlocality of energy transfer in superfluids. Phys. Rev. B 81, 104526 (2010)

    Article  ADS  Google Scholar 

  • Leadbeater, M., Samuels, D.C., Barenghi, C.F., Adams, C.S.: Decay of superfluid turbulence via Kelvin-wave radiation. Phys. Rev. A 67, 015601 (2004)

    Article  ADS  Google Scholar 

  • Leadbeater, M., Winiecki, T., Samuels, D.C., Barenghi, C.F., Adams, C.S.: Sound emission due to superfluid vortex reconnections. Phys. Rev. Lett. 86, 1410–1413 (2001)

    Article  ADS  Google Scholar 

  • Lipniacki, T.: Dynamics of superfluid \(^4\)HE: two-scale approach. Eur. J. Mech. B/Fluids 25, 435–458 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • L’vov, V.S., Nazarenko, S.: Spectrum of Kelvin-wave turbulence superfluid. JETP Lett. 91, 428–434 (2010)

    Article  ADS  Google Scholar 

  • L’vov, V.S., Nazarenko, S.V., Rudenko, O.: Bottleneck crossover between classical and quantum superfluid turbulence. Phys. Rev. B 76, 024520 (2007)

    Article  ADS  Google Scholar 

  • L’vov, V.S., Nazarenko, S.V., Rudenko, O.: Gradual eddy-wave crossover in superfluid turbulence. J. Low Temp. Phys. 153, 140–161 (2008)

    Article  ADS  Google Scholar 

  • L’vov, V.S., Nazarenko, S.V., Skrbek, L.: Energy spectra of developed turbulence in helium superfluids. J. Low Temp. Phys. 145, 125–142 (2006)

    Article  ADS  Google Scholar 

  • L’vov, V.S., Nazarenko, S., Volovik, G.E.: Energy spectra of developed super uid turbulence. JETP Lett. 80, 479–483 (2004)

    Article  ADS  Google Scholar 

  • Nemirovskii, S.K.: Quantum turbulence: theoretical and numerical problems. Phys. Rep. 524, 85–202 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • Nore, C., Abid, M., Brachet, M.E.: Kolmogorov turbulence in low temperature superflows. Phys. Rev. Lett. 78, 3896–3899 (1997)

    Article  ADS  Google Scholar 

  • Ogawa, S., Tsubota, M., Hattori, Y.: Study of reconnection and acoustic emission of quantized vortices in superfluid by the numerical analysis of the Gross–Pitaevskii equation. J. Phys. Soc. Jpn. 71, 813–821 (2002)

    Article  ADS  MATH  Google Scholar 

  • Proment, D., Nazarenko, S., Onorato, M.: Quantum turbulence cascades in the Gross–Pitaevskii model. Phys. Rev. A 80, 051603(R) (2009)

    Article  ADS  Google Scholar 

  • Roche, P.E., Barenghi, C.F., Leveque, E.: Quantum turbulence at finite temperature: the two-fluid cascade. EPL 87, 54006 (2009)

    Article  ADS  Google Scholar 

  • Rorai, C., Skipper, J., Kerr, R.M., Sreenivasan, K.R.: Approach and separation of quantised vortices with balanced cores. J. Fluid Mech. 808, 641–667 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sagaut, P.: Large-Eddy Simulation of Incompressible Flows - An Introduction, 3rd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  • Samuels, D.C., Barenghi, C.F.: Vortex heating in superfluid helium at low temperature. Phys. Rev. Lett. 81, 4381–4383 (1998)

    Article  ADS  Google Scholar 

  • Sasa, N., Kano, T., Machida, M.: Large scale numerical simulation of superfluid turbulence. Phys. Rev. B 84, 054525 (2011)

    Article  ADS  Google Scholar 

  • Sasa, N., Kano, T., Machida, M., L’vov, V.S., Rudenko, O., Tsubota, M.: Energy spectra of quantum turbulence: large-scale simulation and modeling. Prog. Nucl. Sci. Technol. 2, 609–612 (2011)

    Article  Google Scholar 

  • Schwarz, K.W.: Three-dimensional vortex dynamics in superfluid \(^4\)He: line-line and line-boundary interactions. Phys. Rev. B 31, 5782–5804 (1985)

    Article  ADS  Google Scholar 

  • Schwarz, K.W.: Three-dimensional vortex dynamics in superfluid \(^4\)He: homogeneous superfluid turbulence. Phys. Rev. B 38, 2398–2417 (1988)

    Article  ADS  Google Scholar 

  • Schwarz, K.W.: Anomalous decay of turbulence in \(^4\)He. Phys. Rev. Lett. 66, 1898–1901 (1991)

    Article  ADS  Google Scholar 

  • Skbrek, L.: Flow phase diagram for the helium superfluids. In: IUTAM Symposium on Elementary Vortices and Coherent Structures: Significance in Turbulence Dynamics. Book Series: Fluid Mechanics and Its Applications, vol. 79, pp. 361–366 (2004)

    Google Scholar 

  • Skbrek, L.: Energy spectra of quantum turbulence in He II and \(^3\)He-B: a unified view. JETP Lett. 83, 127–131 (2006)

    Article  ADS  Google Scholar 

  • Skbrek, L.: A simple phenomenological model for effective kinematic viscosity of helium superfluids. J. Low. Temp. Phys. 161, 555–560 (2010)

    Article  ADS  Google Scholar 

  • Skbrek, L., Niemela, J.J., Sreenivasan, K.R.: Energy spectrum of grid-generated He II turbulence. Phys. Rev. E 64, 067301 (2001)

    Article  ADS  Google Scholar 

  • Skrbek, L., Sreenivasan, K.R.: Developed quantum turbulence and its decay. Phys. Fluids 24, 011301 (2012)

    Article  ADS  Google Scholar 

  • Skrbek, L., Stalp, S.R.: On the decay of homogeneous isotropic turbulence. Phys. Fluids 12(8), 1997–2019 (2000)

    Article  ADS  MATH  Google Scholar 

  • Swanson, C.E., Wagner, W.T., Donnelly, R.J., Barenghi, C.F.: Calculation of frequency- and velocity-dependent mutual friction parameters in helium II. J. Low Temp. Phys. 66, 263–276 (1987)

    Article  ADS  Google Scholar 

  • Tchoufag, J., Sagaut, P.: Eddy-damped quasinormal Markovian simulations of superfluid turbulence in helium II. Phys. Fluids 22, 125103 (2010)

    Article  ADS  Google Scholar 

  • Tisza, L.: The viscosity of liquid helium and the Bose-Einstein statistic. Comptes Rendus hebdomadaires des séances de l’Acad. des Sci. 207, 1186–1189 (1938)

    Google Scholar 

  • Tsatos, M.C., Tavares, P.E.S., Cidrim, A., Fritsch, A.R., Caracanhas, M.A., dos Santos, F.E.A., Barenghi, C.F., Bagnato, V.S.: Quantum turbulence in trapped atomic Bose–Einstein condensates. Phys. Rep. 622, 1–52 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Tsubota, M.: Quantum turbulence - from superfluid helium to atomic Bose–Einstein condensates. J. Phys. Condens. Matter. 21, 164–207 (2009)

    Article  Google Scholar 

  • Tsubota, M.: Quantum hydrodynamics. Phys. Rep. 522, 191–238 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • Tsubota, M., Adachi, H.: Simulation of counterflow turbulence by vortex filaments. Statistics of vortex reconnections. J. Low Temp. Phys. 162, 367–374 (2011)

    Article  ADS  Google Scholar 

  • Tsubota, M., Fujimoto, K., Yui, S.: Numerical studies of quantum turbulence. J. Low Temp. Phys. 188, 119–189 (2017)

    Article  ADS  Google Scholar 

  • Vinen, W.F.: Classical character of turbulence in a quantum liquid. Phys. Rev. B 61, 1410–1420 (2000)

    Article  ADS  Google Scholar 

  • Vinen, W.F.: Decay of superfluid turbulence at a very low temperature: the radiation of sound from a Kelvin wave on a quantized vortex. Phys. Rev. B 64, 134520 (2001)

    Article  ADS  Google Scholar 

  • Vinen, W.F.: Theory of quantum grid turbulence in superfluid \(^3\)He-B. Phys. Rev. B 71, 024513 (2005)

    Article  ADS  Google Scholar 

  • Vinen, W.F.: An introduction to quantum turbulence. J. Low Temp. Phys. 145, 7–24 (2006)

    Article  ADS  Google Scholar 

  • Vinen, W.F.: Quantum turbulence: achievements and challenges. J. Low Temp. Phys. 161, 419–444 (2010)

    Article  ADS  Google Scholar 

  • Vinen, W.F., Niemela, J.J.: Quantum turbulence. J. Low Temp. Phys. 128, 167–231 (2002)

    Article  ADS  Google Scholar 

  • Vinen, W.F., Tsubota, M., Mitani, A.: Kelvin-wave cascades in turbulent superfluid \(^4\)He at very low temperatures. J. Low Temp. Phys. 134, 457–462 (2004)

    Article  ADS  Google Scholar 

  • Volovik, G.E.: Classical and quantum regimes of the superfluid turbulence. JETP Lett. 78, 533–537 (2003)

    Article  ADS  Google Scholar 

  • Volovik, G.E.: On developed superfluid turbulence. J. Low Temp. Phys. 136, 309–327 (2004)

    Article  ADS  Google Scholar 

  • Walmsley, P.M., Golov, A.I.: Quantum and quasiclassical types of superfluid turbulence. Phys. Rev. Lett. 100, 245301 (2008)

    Article  ADS  Google Scholar 

  • Yepez, J., Vahala, G., Vahala, L., Soe, M.: Superfluid turbulence from quantum Kelvin wave to classical Kolmogorov cascades. Phys. Rev. Lett. 103, 084501 (2009)

    Article  ADS  Google Scholar 

  • Yoshida, K., Arimitsu, T.: Inertial-range structure of Gross–Pitaevskii turbulence within a spectral closure approximation. J. Phys. A: Math. Theor. 46, 335501 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Zuccher, S., Caliari, M., Baggaley, A.W., Barenghi, C.F.: Quantum vortex reconnections. Phys. Fluids 24, 125108 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Sagaut .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sagaut, P., Cambon, C. (2018). Isotropic Turbulence with Coupled Microstructures. II: Quantum Turbulence. In: Homogeneous Turbulence Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-73162-9_6

Download citation

Publish with us

Policies and ethics