Skip to main content

Incompressible Homogeneous Isotropic Turbulence

  • Chapter
  • First Online:
Homogeneous Turbulence Dynamics

Abstract

This chapter is devoted to isotropic incompressible turbulence. The main features of related theories are discussed, along with the recent results: energy spectrum and two-point correlations and related models, closures for non-linear terms in both physical and Fourier space, theories for grid turbulence decay including fractal grid case, non-equilibrium effects, advanced spectral theories and models for kinetic energy cascade and dynamics in physical space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is recalled that the Taylor microscale is associated with scales at which the spectrum of kinetic-energy dissipation, or equivalently the enstrophy spectrum, exhibits its maximum.

  2. 2.

    Let us recall that the flatness factor F(a) and the skewness factor S(a) of the random field \(\varvec{a}\) are defined as

    $$\begin{aligned} F(a) \equiv \frac{\langle a ^4 \rangle }{\langle a ^2 \rangle ^2}, \quad S(a) \equiv \frac{\langle a ^3 \rangle }{\langle a ^2 \rangle ^{3/2}}. \end{aligned}$$
    (4.8)

    If \(\varvec{a}\) is a Gaussian field, then

    $$\begin{aligned} F(a) = 3, \quad S(a) =0. \end{aligned}$$
    (4.9)

    Still assuming that \(\varvec{a}\) is a random Gaussian field, and defining \(\varvec{\omega }_a = \text {curl} \varvec{a}\) and \({{\mathbf {\mathsf{{S}}}}}_a = \frac{1}{2} ( \nabla \varvec{a}+ \nabla ^T \varvec{a})\), one has

    $$\begin{aligned} F( \omega _a )= 5/3 , \quad F ( S_a ^2 ) = 7/5. \end{aligned}$$
    (4.10)

    Another important point is that almost all non-linear functions of \(\varvec{a}\) will exhibit a non-Gaussian behavior.

  3. 3.

    It can be shown Falkovich and Lebedev (1997) that a Gaussian random forcing having a correlation scale \(l_F\) and a time scale \(\tau _F\) yields velocity pdf tails of the form

    $$\begin{aligned} \ln P ( u ) \propto - u ^4 \, \, \text {for} \, \, u \gg \max ( u_{\text {rms}} , l_F / \tau _F ), \end{aligned}$$

    where P(u) is the pdf of the velocity fluctuation u. For a short-correlated forcing such that \(\tau _F \ll l_F /u_{\text {rms}}\), one obtains

    $$\begin{aligned} \ln P ( u ) \propto - u ^3 \, \, \text {for} \, \, l_F / \tau _F \gg u \gg u_{\text {rms}}. \end{aligned}$$

    Therefore, it is seen that the interplay between the external forcing and the turbulence non-linearity leads to an automatic breakdown of Gaussianity for very intense events.

  4. 4.

    The term quasi-isotropic refers here to a state in which at least second-order statistical moments are isotropic. But some anisotropic effects due to turbulence memory may remain on higher-order moments.

  5. 5.

    Let us emphasize here the physical meaning of the sign of T(k). The net effect of nonlinearity on modes k such that \(T(k)>0\) is a kinetic energy gain (which must be balanced by viscous effects in the statistically steady case \(\partial E(k,t) / \partial t\)), while modes such that \(T(k) < 0\) lose more kinetic energy than they gain through nonlinear interactions (these scales must be fed by a forcing term to obtain a statistically steady state). At last, scales such that \(T(k) =0\) are in equilibrium, in the sense that they don’t lose or gain kinetic energy on the mean.

  6. 6.

    The term cascade was coined by Onsager in the late 1940s.

  7. 7.

    This scaling is consistent with the content of the papers published by Kolmogorov in 1941. But it is worth noting that Kolmogorov never worked in the Fourier space. The expression of the turbulent kinetic spectrum was given by his PhD student A. Obhukov, and almost independently rendered popular by Heisenberg.

  8. 8.

    It is important to keep in mind that Kolmogorov inertial range theory is a priori derived assuming that turbulence scales are at equilibrium, i.e. that they are statistically steady. Consequences of non-equilibrium, e.g. in freely decaying turbulence, are discussed in Sect. 4.5.6.3.

  9. 9.

    Other symmetries, such as the mirror symmetry, exist but are not one-parameter symmetries.

  10. 10.

    This analysis is performed considering the following one-parameter (Lie-group) transformation:

    figure a

    Once \(\varvec{X}\) is known, all elements of the symmetry group \(T_a\) can be calculated.

  11. 11.

    An adequate choice for \(v^{\prime 2}_0\) yields \(v^{\prime 2}(t) = \mathcal{K}(t)\).

  12. 12.

    This point is easily understood looking at the Green function solution given by Eqs. (2.53) and (2.54), which show that the pressure fluctuations caused by an eddy at a distance r from this eddy have an intensity \(p' \sim r^{-3}\) for large r.

  13. 13.

    The value \(n=-1.38\) for \(\sigma =4\) is associated to a time varying Loitsyanski integral: \(\mathfrak {I}\sim t^{0.16}\). This results conflicts the most recent DNS results Ishida et al. (2006). This can be understood looking at the expansion of the nonlinear transfer term mediated by strongly non-local triadic interactions in the limit of very small wave numbers retrieved from two-point closures (e.g. EDQNM):

    $$\begin{aligned} T(k \rightarrow 0)= \partial E/\partial t \sim A k^4 - 2 \nu _{turb} k^2 E, \end{aligned}$$

    where \(\nu _{turb}\) is an eddy viscosity. An error on the constant A may yield an error on the energy balance at very small wave numbers, inducing a spurious time-evolution of \(\mathfrak {I}\).

  14. 14.

    One recognizes here \(\sqrt{\nu t}\) which is the similitude variable that appears in the dimensional analysis of the diffusive problems.

  15. 15.

    This is consistent with the fact that it is the only solution which is fully consistent with the symmetry analysis at finite Reynolds number.

  16. 16.

    Looking at previous results, such a theory should fill the gap that exists for \(0.1-1 \le Re_\lambda \le 100-300\).

  17. 17.

    The Gâteaux derivative of a function \(\Psi \) at E in the direction F, with both E and F in the space spanned by the energy spectrum, is defined as:

    $$ \langle \frac{\partial \Psi }{\partial E} (E), F \rangle = \left. \frac{\partial \Psi }{\partial E}\right| _{E}(F)=\lim \limits _{\epsilon \rightarrow 0} \frac{d}{d \epsilon }\Psi (E+\epsilon F). $$
  18. 18.

    Weizsäcker and Heisenberg did not know the works of Oboukhov at this time.

  19. 19.

    Thermalized is used here by analogy with the random molecular motion in which the macroscopic quantities such as temperature and pressure originate.

  20. 20.

    While the observation of these structure is recent, it is worth noting that the idea that turbulent dissipation can be tied to a random distribution of vortex tubes and vortex sheets goes back to Townsend in 1951.

  21. 21.

    This can be directly seen looking at the analytical expressions of the eigenvalues obtained for the Burgers vortex:

    $$\begin{aligned} \hat{\lambda } _{\pm } = \frac{\alpha }{2} \left( -1 \pm Re_\Gamma \left( \frac{4 \nu }{\alpha r^2} \left( 1 - e^{ - \alpha r^2 / 4 \nu } \right) - e^{ - \alpha r^2 / 4 \nu } \right) \right) , \end{aligned}$$
    (4.364)
    $$\begin{aligned} \hat{\lambda } _z = \alpha , \end{aligned}$$
    (4.365)

    where \(Re_\Gamma = \Gamma / 4 \pi \nu \) is the circulation-based Reynolds number. If \(Re_\Gamma \) is high enough, the crossover between \(\hat{\lambda } _+\) and \(\hat{\lambda } _z\) occurs, i.e. there exists a region with \( \hat{\lambda } _+ \ge \hat{\lambda } _z\).

  22. 22.

    These authors also define a strong vortex tube as a region with large vorticity and small strain rate.

  23. 23.

    Another possible physical process for this scaling law, the interactions between vortex tubes, is shown to be much weaker than self-stretching.

  24. 24.

    Uncoherent structures are defined here as structures with a characteristic vorticity weaker than the background vorticity \(\omega '\).

  25. 25.

    High is to be understood as a relative notion, the reference being the wave numbers at which turbulent kinetic energy is injected/created by external forcing or hydrodynamic instabilities.

  26. 26.

    In the one-dimensional case, the divergence-free constraint simplifies into a null space derivative constraint, leading to uniform solutions in space.

  27. 27.

    Exact relations are \(u^{(1)} = - \hat{\omega }_\parallel /k\) and \(u^{(2)} = - \hat{u}_\parallel \) in the horizontal wave plane (\(k_\parallel =0\)).

References

  • André, J.-C., Lesieur, M.: Influence of helicity on the evolution of isotropic turbulence at high Reynolds number. J. Fluid Mech. 81, 187–207 (1977)

    Article  ADS  MATH  Google Scholar 

  • Andreotti, B.: Studying Burgers’ models to investigate the physical meaning of the alignments statistically observed in turbulence. Phys. Fluids 9, 735–742 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Antonia, R.A., Burattini, P.: Approach to the 4/5 law in homogeneous isotropic turbulence. J. Fluid Mech. 550, 175–184 (2006)

    Article  ADS  MATH  Google Scholar 

  • Bass, J.: Sur les bases mathématiques de la théorie de la turbulence. Comptes Rendus Acad. Sci. 228(3), 228–229 (1949)

    Google Scholar 

  • Batchelor, G.K.: Energy decay and self-preserving correlation functions in isotropic turbulence. Q. Appl. Math. 6, 97 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  • Batchelor, G.K.: Pressure fluctuations in isotropic turbulence. Proc. Camb. Philos. Soc. 47, 359–374 (1951)

    Article  ADS  MATH  Google Scholar 

  • Batchelor, G.K.: The Theory of Homogeneous Turbulence. Cambridge University Press, Cambridge (1953)

    MATH  Google Scholar 

  • Benney, D.J., Newell, A.C.: Random wave closure. Stud. Appl. Math. 48, 29–53 (1969)

    Article  MATH  Google Scholar 

  • Borue, V., Orszag, S.A.: Self similar decay of three-dimensional homogeneous turbulence with hyperviscosity. Phys. Rev. E 51(2), R856–R859 (1995a)

    Google Scholar 

  • Borue, V., Orszag, S.A.: Forced three-dimensional homogeneous turbulence with hyperviscosity. Europhys. Lett. 29(9), 687–692 (1995b)

    Google Scholar 

  • Bos, W.J.T., Bertoglio, J.-P.: Dynamics of spectrally truncated inviscid turbulence. Phys. Fluids 18, 071701 (2006a)

    Google Scholar 

  • Bos, W.J.T., Bertoglio, J.-P.: A single-time two-point closure based on fluid particle displacements. Phys. Fluids 18, 031706 (2006b)

    Google Scholar 

  • Bos, W.J.T., Rubinstein, R.: Dissipation in unsteady turbulence. Phys. Rev. Fluids 2, 022601(R) (2017)

    Article  ADS  Google Scholar 

  • Bos, W.J.T., Shao, L., Bertoglio, J.P.: Spectral imbalance and the normalized dissipation rate of turbulence. Phys. Fluids 19, 045101 (2007)

    Article  ADS  MATH  Google Scholar 

  • Brasseur, J.G., Wei, C.H.: Interscale dynamics and local isotropy in high Reynolds number turbulence within triadic interactions. Phys. Fluids 6(2), 842–870 (1994)

    Article  ADS  MATH  Google Scholar 

  • Cambon, C., Jacquin, L.: Spectral approach to non-isotropic turbulence subjected to rotation. J. Fluid Mech. 202, 295–317 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cambon, C., Jeandel, D., Mathieu, M.: Spectral modelling of homogeneous non-isotropic turbulence. J. Fluid Mech. 104, 247–262 (1981)

    Article  ADS  MATH  Google Scholar 

  • Cantwell, B.J.: Exact solution of a restricted Euler equation for the velocity gradient tensor. Phys. Fluids A 4, 782–793 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chakraborty, P., Balachandar, S., Adrian, R.J.: On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189–214 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chandrasekhar, S.: The theory of statistical and isotropic turbulence. Phys. Rev. 76(5), 896–897 (1949)

    Google Scholar 

  • Chertkov, M., Pumir, A., Shraiman, B.I.: Lagrangian tetrad dynamics and the phenomenology of turbulence. Phys. Fluids 11, 2394–2410 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chevillard, L., Meneveau, C., Biferale, L., Toschi, F.: Modeling the pressure Hessian and viscous Laplacian in turbulence: comparisons with direct numerical simulation and implications on velocity gradient dynamics. Phys. Fluids 20, 101504 (2008)

    Article  ADS  MATH  Google Scholar 

  • Chong, M.S., Perry, A.E., Cantwell, B.J.: A general classification of three-dimensional flow fields. Phys. Fluids 2, 765–777 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  • Cichowlas, C., Bonati, P., Debbasch, F., Brachet, M.: Effective dissipation and turbulence in spectrally truncated Euler flows. Phys. Rev. Lett. 95, 264502 (2005)

    Article  ADS  Google Scholar 

  • Clark, T.T., Zemach, C.: Symmetries and the approach to statistical equilibrium in isotropic turbulence. Phys. Fluids 31, 2395–2397 (1998)

    MathSciNet  MATH  Google Scholar 

  • Clark, T.T., Rubinstein, R., Weinstock, J.: Reassessment of the classical turbulence closures: the Leith diffusion model. J. Turbul. 10(35), 1–23 (2009)

    MathSciNet  MATH  Google Scholar 

  • Coleman, G.N., Mansour, N.N.: Modeling the rapid spherical compression of isotropic turbulence. Phys. Fluids 3, 2255–2259 (1991)

    Article  ADS  MATH  Google Scholar 

  • Comte-Bellot, G., Corrsin, S.: The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25, 657–682 (1966)

    Article  ADS  Google Scholar 

  • Davidson, P.A.: Turbulence. An Introduction for Scientists and Engineers. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  • Davidson, P.A.: The minimum energy decay rate in quasi-isotropic grid turbulence. Phys. Fluids 23, 085108 (2011)

    Article  ADS  Google Scholar 

  • De Divitiis, N.: von Karman-Howarth and Corrsin equations closure based on Lagrangian description of the fluid motion. Ann. Phys. 368, 296–309 (2016)

    Article  ADS  MATH  Google Scholar 

  • Djenidi, L., Antonia, R.A.: A general self-preservation analysis for decaying homogeneous isotropic turbulence. J. Fluid Mech. 773, 345–365 (2015)

    Google Scholar 

  • Djenidi, L., Kamruzzaman, Md, Antonia, R.A.: Power-law exponent in the transition period of decay in grid turbulence. J. Fluid Mech. 779, 544–555 (2015)

    Google Scholar 

  • Donzis, D.A., Sreenivasan, K.R., Yeung, P.K.: Some results on the Reynolds number scaling of pressure statistics in isotropic turbulence. Phys. D 241, 164–168 (2012)

    Article  MathSciNet  Google Scholar 

  • Dryden, J.L.: A review of the statistical theory of turbulence. Q. Appl. Math. 1, 7–42 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  • Eyink, G.L., Thomson, D.J.: Free decay of turbulence and breakdown of self-similarity. Phys. Fluids 12(3), 477–479 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Favier, B., Godeferd, F.S., Cambon, C.: On space and time correlations of isotropic and rotating turbulence. Phys. Fluids 22, 015101 (2010)

    Article  ADS  MATH  Google Scholar 

  • Falkovich, G., Lebedev, V.: Single-point velocity distribution in turbulence. Phys. Rev. Lett. 79(21), 4159–4161 (1997)

    Article  ADS  Google Scholar 

  • Fjortoft, R.: On the changes in spectral distributions on kinetic energy for two-dimensional, non-divergent flow. Tellus 5, 225–230 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  • Fournier, J.D., Frisch, U.: \(d\)-dimensional turbulence. Phys. Rev. A 17(2), 747–762 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  • Frisch, U.: Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  • George, W.K.: The decay of homogeneous turbulence. Phys. Fluids A 4(7), 1492–1509 (2000)

    Google Scholar 

  • George, W.K.: Asymptotic effect of initial and upstream conditions on turbulence. ASME J. Fluids Eng. 134, 061203 (2012)

    Article  Google Scholar 

  • George, W.K., Wang, H.: The exponential decay of homogeneous isotropic turbulence. Phys. Fluids 21, 025108 (2000)

    Google Scholar 

  • Girimaji, S.S., Zhou, Y.: Spectrum and energy transfer in steady Burgers turbulence. ICASE Report No. 95–13 (1995)

    Google Scholar 

  • Goto, S., Vassilicos, J.C.: Energy dissipation and flux laws for unsteady turbulence. Phys. Lett. A 379, 1144–1148 (2015)

    Article  ADS  Google Scholar 

  • Guo, H., Li, C., Qu, Q., Liu, P.: Attractive fixed-point solution study of shell model for homogeneous isotropic turbulence. Appl. Math. Mech. 34, 259–268 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • He, G.W., Jin, G., Zhao, X.: Scale-similarity model for Lagrangian velocity correlations in isotropic and stationary turbulence. Phys. Rev. E 80, 066313 (2009)

    Article  ADS  Google Scholar 

  • Heisenberg, W.: Zur statistischen theorie der turbulenz. Zeitschrift fur Physik 124, 628–657 (1948)

    Google Scholar 

  • Hinze, J.O.: Turbulence. McGraw-Hill Series in Mechanical Engineering. McGraw-Hill, New York (1975)

    Google Scholar 

  • Horiuti, K.: A classification method for vortex sheet and tube structures in turbulent flows. Phys. Fluids 13(12), 3756–3774 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Horiuti, K., Takagi, Y.: Identification method for vortex sheet structures in turbulent flows. Phys. Fluids 17, 121703 (2005)

    Article  ADS  MATH  Google Scholar 

  • Horiuti, K., Tamaki, T.: Nonequilibrium energy spectrum in the subgrid-scale one-equation model in large-eddy simulation. Phys. Fluids 25, 125104 (2013)

    Article  ADS  Google Scholar 

  • Horiuti, K., Yanagihara, S., Tamaki, T.: Nonequilibrium state in energy spectra and transfer with implications for topological transitions and SGS modeling. Fluid Dyn. Res. 48, 021409 (2016)

    Article  MathSciNet  Google Scholar 

  • Hunt, J.C.R., Wray, A.A. Moin, P.: Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88, pp. 193–208 (1988)

    Google Scholar 

  • Ishida, T., Davidson, P.A., Kaneda, Y.: On the decay of isotropic turbulence. J. Fluid Mech. 564, 455–475 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ishihara, T., Kaneda, Y., Yokokawa, M., Itakura, K., Uno, A.: Energy spectrum in the near dissipation range of high resolution DNS of turbulence. J. Phys. Soc. Jpn. 74(5), 1464–1471 (2005)

    Article  ADS  MATH  Google Scholar 

  • Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Jimenez, J.: Kinematic alignment effects in turbulent flows. Phys. Fluids 4, 652–654 (1992)

    Article  ADS  Google Scholar 

  • Jimenez, J., Wray, A.: On the characteristics of vortex filaments in isotropic turbulence. J. Fluid Mech. 373, 255–285 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Jimenez, J., Wray, A., Saffman, P.G., Rogallo, R.: The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 65–90 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kaneda, Y.: Lagrangian and Eulerian time correlations in turbulence. Phys. Fluids A 5(11), 2835–2845 (1993)

    Article  ADS  MATH  Google Scholar 

  • Kaneda, Y., Ishihara, T., Gotoh, K.: Taylor expansions in powers of time of Lagrangian and Eulerian two-point two-time velocity correlations in turbulence. Phys. Fluids 11, 2154–2166 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kida, S., Ohkitani, K.: Spatiotemporal intermittency and instability of a forced turbulence. Phys. Fluids 4, 1018–1027 (1992a)

    Article  ADS  MATH  Google Scholar 

  • Kida, S., Ohkitani, K.: Fine structure of energy transfer in turbulence. Phys. Fluids 4, 1602–1604 (1992b)

    Article  ADS  Google Scholar 

  • Kovasznay, L.S.G.: The spectrum of locally isotropic turbulence. Phys. Rev. 73(9), 1115–1116 (1948)

    Google Scholar 

  • Kraichnan, R.H.: The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5(4), 497–543 (1959)

    Google Scholar 

  • Kraichnan, R.H.: Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417–1423 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  • Kraichnan, R.H.: Inertial-range transfer in two- and three-dimensional turbulence. J. Fluid Mech. 47, 525–535 (1971)

    Article  ADS  MATH  Google Scholar 

  • Kraichnan, R.H.: Eddy-viscosity in two and three dimensions. J. Atmos. Sci 33, 1521–1536 (1976)

    Article  ADS  Google Scholar 

  • Kraichnan, R.H., Panda, R.: Depression of nonlinearity in decaying isotropic turbulence. Phys. Fluids 31, 2395–2397 (1988)

    Article  ADS  MATH  Google Scholar 

  • Krogstad, P.A., Davidson, P.A.: Near-field investigation of turbulence produced by multi-scale grids. Phys. Fluids 24, 035103 (2012)

    Article  ADS  Google Scholar 

  • Lamorgese, A.G., Caughey, D.A., Pope, S.B.: Direct numerical simulation of homogeneous turbulence with hyperviscosity. Phys. Fluids 17, 015106 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lesieur, M.: Turbulence in fluids, 3rd edn. Kluwer Academic Publishers, Dordrecht (1997)

    Book  MATH  Google Scholar 

  • Lesieur, M., Schertzer, D.: Amortissement auto-similaire d’une turbulence à grand nombre de Reynolds. J. Méc. 17, 609–646 (1978). (in french)

    MATH  Google Scholar 

  • Lesieur, M., Ossia, S., Metais, O.: Infrared pressure spectra in two- and three-dimensional isotropic incompressible turbulence. Phys. Fluids 11, 1535–1543 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lindborg, E.: Correction to four-fifths law due to variations of the dissipation. Phys. Fluids 11(3) , 510–512 (1999)

    Google Scholar 

  • Llor, A., Soulard, O.: Comment on “Energy spectra at low wavenumbers in homogeneous incompressible turbulence” (Phys. Lett. A 375, 2850 (2011)). Phys. Lett. A 377, 1157–1159 (2013)

    Google Scholar 

  • Lund, T.S., Rogers, M.M.: An improved measure of strain rate probability in turbulent flows. Phys. Fluids 6, 1838–1847 (1994)

    Article  ADS  MATH  Google Scholar 

  • Lundgren, T.S.: Kolmogorov two-thirds law by matched asymptotic expansions. Phys. Fluids 14, 638–642 (2002)

    Google Scholar 

  • Lundgren, T.S.: Kolmogorov turbulence by matched asymptotic expansion. Phys. Fluids 15, 1074–1081 (2003)

    Google Scholar 

  • Manley, O.P.: The dissipation range spectrum. Phys. Fluids 4(6), 1320–1321 (1992)

    Article  ADS  Google Scholar 

  • Martins-Afonso, M., Meneveau, C.: Recent fluid deformation closure for velocity gradient tensor dynamics in turbulence: timescale effects and expansions. Phys. D 239, 1241–1250 (2010)

    Article  MATH  Google Scholar 

  • Mazzi, B., Vassilicos, J.C.: Fractal-generated turbulence. J. Fluid Mech. 502, 65–87 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mathieu, J., Scott, J.: An Introduction to Turbulent Flow. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  • Martin, J., Dopazo, C., Valino, L.: Dynamics of velocity gradient invariants in turbulence: restricted Euler and linear diffusion models. Phys. Fluids 10, 2012–2025 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mazellier, N., Vassilicos, J.C.: The turbulence dissipation constant is not universal because of its universal dependence on large-scale flow topology. Phys. Fluids 20, 015101 (2008)

    Article  ADS  MATH  Google Scholar 

  • Meldi, M., Sagaut, P.: On non-self similar regimes in homogeneous isotropic turbulence decay. J. Fluid Mech. 711, 364–393 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Meldi, M., Sagaut, P.: Further insights into self-similarity and self-preservation in freely decaying isotropic turbulence. J. Turbul. 14(8), 24–53 (2013a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Meldi, M., Sagaut, P.: Pressure statistics in self-similar freely decaying isotropic turbulence. J. Fluid Mech. 717, R2-1–R2-12 (2013b)

    Google Scholar 

  • Meldi, M., Sagaut, P.: Turbulence in a box: quantification of large-scale resolution effects in isotropic turbulence free decay. J. Fluid Mech. 818, 697–715 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  • Meldi, M., Sagaut, P., Lucor, D.: A stochastic view of isotropic turbulence decay. J. Fluid Mech. 668, 351–362 (2011)

    Article  ADS  MATH  Google Scholar 

  • Meldi, M., Lejemble, H., Sagaut, P.: On the emergence of non-classical decay regimes in multiscale/fractal generated isotropic turbulence. J. Fluid Mech. 756, 816–843 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • Meneveau, C.: Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Ann. Rev. Fluid Mech. 43, 219–245 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Meyers, J., Meneveau, C.: A functional form for the energy spectrum parametrizing bottleneck and intermittency effects. Phys. Fluids 20(6), 065109 (2008)

    Google Scholar 

  • Millionschikov, M.D.: Theory of homogeneous isotropic turbulence. Dokl. Akad. Nauk. SSSR 32, 22–24 (1941)

    Google Scholar 

  • Mohamed, M.S., Larue, J.C.: The decay power law in grid-generated turbulence. J. Fluid Mech. 219, 195–214 (1990)

    Article  ADS  Google Scholar 

  • Moisy, F.: Kolmogorov equation in a fully developed turbulence experiment. Phys. Rev. Lett. 82(20), 3994–3997 (1999)

    Google Scholar 

  • Moisy, F., Jimenez, J.: Geometry and clustering of intense structures in isotropic turbulence. J. Fluid Mech. 513, 111–133 (2004)

    Article  ADS  MATH  Google Scholar 

  • Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics, vol. 1. MIT Press, Cambridge (1975)

    Google Scholar 

  • Mons, V., Chassaing, J.C., Gomez, T., Sagaut, P.: Is isotropic turbulence decay governed by asymptotic behavior of large scales? An eddy-damped quasi-normal Markovian-based data assimilation study. Phys. Fluids 26, 115105 (2014)

    Article  Google Scholar 

  • Nomura, K.K., Post, G.K.: The structure and the dynamics of vorticity and rate of strain in incompressible homogeneous turbulence. J. Fluid Mech. 377, 65–97 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Noullez, A., Pinton, J.F.: Global fluctuations in decaying Burgers turbulence. Eur. Phys. J. B. 28, 231–241 (2002)

    Article  ADS  Google Scholar 

  • Noullez, A., Vergassola, M.: A fast Legendre transfrom algorithm and applications to the adhesion model. J. Sci. Comput. 9(3), 259–281 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Noullez, A., Wallace, G., Lempert, W., Miles, R.B., Frisch, U.: Transverse velocity increments in turbulent flow using the RELIEF technique. J. Fluid Mech. 339, 287–307 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Noullez, A., Gurbatov, S.N., Aurell, E., Simdyankin, S.I.: Global picture of self-similar and non-self-similar decay in Burgers turbulence. Phys. Rev. E 71, 056305 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • Oberlack, M.: On the decay exponent of isotropic turbulence. Proc. Appl. Math. Mech. 1, 294–297 (2002)

    Article  MATH  Google Scholar 

  • O’Brien, E.F., Francis, G.C.: A consequence of the zero fourth cumulant approximation. J. Fluid Mech. 13, 369–382 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  • Ogura, Y.: A consequence of the zero fourth cumulant approximation in the decay of isotropic turbulence. J. Fluid Mech. 16, 33–40 (1963)

    Article  ADS  MATH  Google Scholar 

  • Orszag, S.A.: Analytical theories of turbulence. J. Fluid Mech. 41, 363–386 (1970)

    Article  ADS  MATH  Google Scholar 

  • Park, N., Mahesh, K.: Analysis of statistical errors in large-eddy simulation using statistical closure theory. J. Comput. Phys. 222(1), 194–216 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pao, Y.M.: Structure of turbulent velocity and scalar fields at large wavenumbers. Phys. Fluids 8(6), 1063–1075 (1965)

    Google Scholar 

  • Piquet, J.: Turbulent flows. Models and Physics, 2nd edn. Springer, Berlin (2001)

    Google Scholar 

  • Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  • Pouquet, A., Lesieur, M., André, J.-C., Basdevant, C.: Evolution of high Reynolds number two-dimensional turbulence. J. Fluid Mech. 75, 305–319 (1975)

    ADS  MATH  Google Scholar 

  • Qian, J.: Universal equilibrium range of turbulence. Phys. Fluids 27(9), 2229–2233 (1984)

    Google Scholar 

  • Qian, J.: Slow decay of the finite Reynolds number effect of turbulence. Phys. Rev. E 60(3), 3409–3412 (1999)

    Google Scholar 

  • Ristorcelli, J.R.: The self-preserving decay of isotropic turbulence: analytic solutions for energy and dissipation. Phys. Fluids 15, 3248–3250 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ristorcelli, J.R.: Passive scalar mixing: analytic study of time scale ratio, variance, and mix rate. Phys. Fluids 18, 075101 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ristorcelli, J.R., Livescu, D.: Decay of isotropic turbulence: fixed points and solutions for nonconstant \(G \sim R_\lambda \) palinstrophy. Phys. Fluids 16, 3487–3490 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Rossi, M.: Of vortices and vortical layers: an overview. In: Maurel, A., Petitjeans, P. (eds.) Vortex Structure and Dynamics. Lecture Notes in Physics, pp. 40–123. Springer, Berlin (2000)

    Google Scholar 

  • Saffman, P.G.: On the fine scale structure of vector fields convected by a turbulent fluid. J. Fluid Mech. 16(4), 545–572 (1963)

    Google Scholar 

  • Siggia, E.D.: Numerical study of small scale intermittency in three dimensional turbulence. J. Fluid Mech. 107, 375–406 (1981)

    Article  ADS  MATH  Google Scholar 

  • Skrbek, L., Stalp, S.R.: On the decay of homogeneous isotropic turbulence. Phys. Fluids 12(8), 1997–2019 (2000)

    Article  ADS  MATH  Google Scholar 

  • Speziale, C.G., Bernard, P.S.: The energy decay in self-preserving isotropic turbulence revisited. J. Fluid Mech. 241, 645–667 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sreenivasan, K.R.: On the universality of the Kolmogorov constant. Phys. Fluids 7, 2778–2784 (1995)

    Google Scholar 

  • Suzuki, E., Nakano, T., Takashi, N., Gotoh, T.: Energy transfer and intermittency in four-dimensional turbulence. Phys. Fluids 17, 081702 (2005)

    Article  ADS  MATH  Google Scholar 

  • Tanaka, M., Kida, S.: Characterization of vortex tubes and sheets. Phys. Fluids 5(9), 2079–2082 (1993)

    Article  ADS  Google Scholar 

  • Tatsumi, T.: The theory of decay process of incompressible isotropic turbulence. Proc. R. Soc. Lond. A 239, 16 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Taylor, G.I.: Statistical theory of turbulence. Proc. R. Soc. Lond. A 151, 421–444 (1935)

    Google Scholar 

  • Tchoufag, J., Sagaut, P., Cambon, C.: A spectral approach to finite Reynolds number effects on Kolmogorov’s 4/5 law in isotropic turbulence. Phys. Fluids 24, 015107 (2012)

    Article  ADS  Google Scholar 

  • Thiesset, F., Antonia, R.A., Danaila, L., Djenidi, L.: Karman-Howarth closure equation on the basis of a universal eddy viscosity. Phys. Rev. E 88, 011003 (2013)

    Article  ADS  Google Scholar 

  • Tsinober, A.: An Informal Introduction to Turbulence. Kluwer Academic Publishers, Dordrecht (2001)

    MATH  Google Scholar 

  • Vassilicos, J.C.: Dissipation in turbulent flows. Ann. Rev. Fluid Mech.47, 95–114 (2015)

    Google Scholar 

  • Verzicco, R., Jimenez, J., Orlandi, P.: Steady columnar vortices under local compression. J. Fluid Mech. 299, 367–388 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Vignon, J.-M., Cambon, C.: Thermal spectral calculation using eddy-damped quasi-normal Markovian theory. Phys. Fluids 23, 1935–1937 (1980)

    Google Scholar 

  • Von Karman, T., Howarth, L.: On the statistical theory of isotropic turbulence. Proc. R. Soc. A 164, 192–215 (1938)

    Article  ADS  MATH  Google Scholar 

  • Von Karman, T., Lin, C.C.: On the concept of similarity in the theory of isotropic turbulence. Rev. Mod. Phys. 21(3), 516–519 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Waleffe, F.: The nature of triad interactions in homogeneous turbulence. Phys. Fluids 4, 350–363 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Waleffe, F.: Inertial transfers in the helical decomposition. Phys. Fluids 5, 677–685 (1993)

    Article  ADS  MATH  Google Scholar 

  • Wilczek, M., Meneveau, M.: Pressure Hessian and viscous contributions to velocity gradient statistics based on Gaussian random fields. J. Fluid Mech. 756, 191–225 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Woodruff, S.L., Rubinstein, R.: Multiplescale perturbation analysis of slowly evolving turbulence. J. Fluid Mech. 565, 95–103 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wylczek, M., Narita, Y.: Wave-number?frequency spectrum for turbulence from a random sweeping hypothesis with mean flow. Phys. Rev. E 86, 066308 (2012)

    Article  ADS  Google Scholar 

  • Zakharov, V.E., Lvov, V., Falkowitch, G.: Wave Turbulence. Springer, Berlin (1992)

    Google Scholar 

  • Zhao, X., He, G.W.: Space-time correlations of fluctuating velocities in turbulent shear flows. Phys. Rev. E 79, 046316 (2009)

    Article  ADS  Google Scholar 

  • Zhou, J., Adrian, R.J., Balachandar, S., Kendall, T.M.: Mechanisms for generating coherent packets of hairpin vortices. J. Fluid Mech. 387, 353–396 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Sagaut .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sagaut, P., Cambon, C. (2018). Incompressible Homogeneous Isotropic Turbulence. In: Homogeneous Turbulence Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-73162-9_4

Download citation

Publish with us

Policies and ethics