Skip to main content

Amphipol-Assisted Cell-Free Expression of Membrane Proteins

  • Chapter
  • First Online:
Membrane Proteins in Aqueous Solutions

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Summary

Cell-free expression of membrane proteins is a way to circumvent some of the problems encountered during their in vivo expression, among which is the small volume of membrane that is generally available for storing overexpressed membrane proteins and their toxicity when expressed in excessive amounts. Because of their mildness, amphipols appear as an attractive medium in which to solubilize and allow folding of membrane proteins expressed in vitro in cell lysates. Relatively few attempts at doing so have been described to date. They indicate (i) that all ionic polymers tested thus far interfere with the synthesis of α-helical membrane proteins and (ii) that two non-ionic polymers, NVoy and a glucosylated non-ionic amphipol, do allow their synthesis, folding, and solubilization in good yields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdine, A., Park, K.H., Warschawski, D.E. (2012) Cell-free membrane protein expression for solid-state NMR. Meth. Mol. Biol. 831:85–109.

    Article  Google Scholar 

  • Arévalo, M.A., Tejedor, F., Polo, F., Ballesta, J.P. (1988) Protein components of the erythromycin binding site in bacterial ribosomes. J. Biol. Chem. 263:58–63.

    Google Scholar 

  • Bazzacco, P. (2009) Non-ionic amphipols: new tools for in vitro studies of membrane proteins. Validation and development of biochemical and biophysical applications. Thèse de Doctorat, Université Paris-7, 176 p.

    Google Scholar 

  • Bazzacco, P., Billon-Denis, E., Sharma, K.S., Catoire, L.J., Mary, S., Le Bon, C., Point, E., Banères, J.-L., Durand, G., Zito, F., Pucci, B., Popot, J.-L. (2012) Non-ionic homopolymeric amphipols: Application to membrane protein folding, cell-free synthesis, and solution NMR. Biochemistry 51:1416–1430.

    Google Scholar 

  • Blesneac, I., Ravaud, S., Juillan-Binard, C., Barret, L.A., Zoonens, M., Polidori, A., Miroux, B., Pucci, B., Pebay-Peyroula, E. (2012) Production of UCP1, a membrane protein from the inner mitochondrial membrane, using the cell-free expression system in the presence of a fluorinated surfactant. Biochim. Biophys. Acta 1818:798–805.

    Article  Google Scholar 

  • Bogdanov, M., Dowhan, W. (1998) Phospholipid-assisted protein folding: phosphatidylethanolamine is required at a late step of the conformational maturation of the polytopic membrane protein lactose permease. EMBO J. 17:5255–5264.

    Article  Google Scholar 

  • Breyton, C., Gabel, F., Abla, M., Pierre, Y., Lebaupain, F., Durand, G., Popot, J.-L., Ebel, C., Pucci, B. (2009) Micellar and biochemical properties of (hemi)fluorinated surfactants are controlled by the size of the polar head. Biophys. J. 97:1077–1086.

    Article  ADS  Google Scholar 

  • Buchanan, S.K., Yamashita, S., Fleming, K.G. (2012) Structure and folding of outer membrane proteins, in: Tamm, L.K., ed., Membranes. Elsevier, Oxford:Academic Press, pp. 139–163.

    Google Scholar 

  • Bulkley, D., Innis, A., Blaha, G., Steitz, T.A. (2010) Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proc. Natl. Acad. Sci. USA 107:17158–17163.

    Article  ADS  Google Scholar 

  • Cappuccio, J.A., Hinz, A.K., Kuhn, E.A., Fletcher, J.E., Arroyo, E.S., Henderson, P.T., Blanchette, C.D., Walsworth, V.L., Corzett, M.H., Law, R.J., Pesavento, J.B., Segelke, B.W., Sulchek, T.A., Chromy, B.A., Katzen, F., Peterson, T.C., Bench, G., Kudlicki, W., Hoeprich, P.D., Jr., Coleman, M.A. (2009) Cell-free expression for nanolipoprotein particles: building a high-throughput membrane protein solubility platform. Methods Mol. Biol. 498:273–296.

    Article  Google Scholar 

  • Catoire, L.J., Zoonens, M., van Heijenoort, C., Giusti, F., Guittet, E., Popot, J.-L. (2010) Solution NMR mapping of water-accessible residues in the transmembrane β-barrel of OmpX. Eur. Biophys. J. 39:623–630.

    Article  Google Scholar 

  • Chittum, H.S., Champney, W.S. (1994) Ribosomal protein gene sequence changes in erythromycin-resistant mutants of Escherichia coli. J. Bact. 176:6192–6198.

    Article  Google Scholar 

  • Corin, K., Baaske, P., Ravel, D.B., Song, J., Brown, E., Wang, X., Wienken, C.J., Jerabek-Willemsen, M., Duhr, S., Luo, Y., Braun, D., Zhang, S. (2011) Designer lipid-like peptides: a class of detergents for studying functional olfactory receptors using commercial cell-free systems. PLoS ONE 6:e25067.

    Article  ADS  Google Scholar 

  • Dahmane, T., Rappaport, F., Popot, J.-L. (2013) Amphipol-assisted folding of bacteriorhodopsin in the presence and absence of lipids. Functional consequences. Eur. Biophys. J. 42:85–101.

    Article  Google Scholar 

  • Diab, C., Tribet, C., Gohon, Y., Popot, J.-L., Winnik, F.M. (2007a) Complexation of integral membrane proteins by phosphorylcholine-based amphipols. Biochim. Biophys. Acta 1768:2737–2747.

    Article  Google Scholar 

  • Diab, C., Winnik, F.M., Tribet, C. (2007b) Enthalpy of interaction and binding isotherms of non-ionic surfactants onto micellar amphiphilic polymers (amphipols). Langmuir 23:3025–3035.

    Article  Google Scholar 

  • Ferrandez, Y., Dezi, M., Bosco, M., Urvoas, A., Valério, M., Le Bon, C., Giusti, F., Broutin, I., Durand, G., Polidori, A., Popot, J.-L., Picard, M., Minard, P. (2014) Amphipol-mediated screening of molecular orthoses specific for membrane protein targets. J. Membr. Biol. 247:925–940.

    Article  Google Scholar 

  • Focke, P.J., Hein, C., Hoffmann, B., Matulef, K., Bernhard, F., Dötsch, V., Valiyaveetil, F.I. (2016) Combining in vitro folding with cell-free protein synthesis for membrane protein expression. Biochemistry 55:4212–4219.

    Article  Google Scholar 

  • Ge, X., Xu, J. (2012) Cell-free protein synthesis as a promising expression system for recombinant proteins. Methods Mol. Biol. 824:565–578.

    Article  Google Scholar 

  • Gohon, Y., Dahmane, T., Ruigrok, R., Schuck, P., Charvolin, D., Rappaport, F., Timmins, P., Engelman, D.M., Tribet, C., Popot, J.-L., Ebel, C. (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys. J. 94:3523–3537.

    Article  ADS  Google Scholar 

  • Grisshammer, R., Tate, C.G. (1995) Overexpression of integral membrane proteins for structural studies. Quart. Rev. Biophys. 28:315–422.

    Article  Google Scholar 

  • Guild, K., Zhang, Y., Stacy, R., Mundt, E., Benbow, S., Green, A., Myler, P.J. (2011) Wheat germ cell-free expression system as a pathway to improve protein yield and solubility for the SSGCID pipeline. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67:1027–1031.

    Article  Google Scholar 

  • Hein, C., Henrich, E., Orbán, E., Dötsch, V., Bernhard, F. (2014) Hydrophobic supplements in cell-free systems: Designing artificial environments for membrane proteins. Engin. Life Sci. 14:365–379.

    Article  Google Scholar 

  • Henrich, E., Hein, C., Dötsch, V., Bernhard, F. (2015) Membrane protein production in Escherichia coli cell-free lysates. FEBS Lett. 589:1713–1722.

    Article  Google Scholar 

  • Henrich, E., Peetz, O., Hein, C., LaGuerre, A., Hoffmann, B., Hoffmann, J., Dötsch, V., Bernhard, F., Morgner, N. (2017) Analyzing native membrane protein assembly in nanodiscs by combined non-covalent mass spectrometry and synthetic biology. eLife 6:e20954.

    Article  Google Scholar 

  • Hrmova, M., Stone, B.A., Fincher, G.B. (2010) High-yield production, refolding and molecular modelling of the catalytic module of (1,3)-β-d-glucan (curdlan) synthase from Agrobacterium sp. Glycoconj. J. 27:461–476.

    Article  Google Scholar 

  • Huppa, J.B., Ploegh, H.L. (1997) In vitro translation and assembly of a complete T cell receptor-CD3 complex. J. Exp. Med. 186:393–403.

    Article  Google Scholar 

  • Isaksson, L., Enberg, J., Neutze, R., Karlsson, B.G., Pedersen, A. (2012) Expression screening of membrane proteins with cell-free protein synthesis. Protein Expr. Purif. 82:218–225.

    Article  Google Scholar 

  • Junge, F., Luh, L.M., Proverbio, D., Schäfer, B., Abele, R., Beyermann, M., Dötsch, V., Bernhard, F. (2010) Modulation of G-protein coupled receptor sample quality by modified cell-free expression protocols: A case study of the human endothelin A receptor. J. Struct. Biol. 172:94–106.

    Article  Google Scholar 

  • Kai, L., Roos, C., Haberstock, S., Proverbio, D., Ma, Y., Junge, F., Karbyshev, M., Dötsch, V., Bernhard, F. (2012) Systems for the cell-free synthesis of proteins. Methods Mol. Biol. 800:201–215.

    Article  Google Scholar 

  • Kai, L., Orbán, E., Henrich, E., Proverbio, D., Dötsch, V., Bernhard, F. (2015) Co-translational stabilization of insoluble proteins in cell-free expression systems. Methods Mol. Biol. 1258:125–143.

    Article  Google Scholar 

  • Kaiser, L., Graveland-Bikker, J., Steuerwald, D., Vanberghem, M., Herlihy, K., Zhang, S. (2008) Efficient cell-free production of olfactory receptors: detergent optimization, structure, and ligand binding analyses. Proc. Natl. Acad. Sci. USA 105:15726–15731.

    Article  ADS  Google Scholar 

  • Katzen, F., Fletcher, J.E., Yang, J.P., Kang, D., Peterson, T.C., Cappuccio, J.A., Blanchette, C.D., Sulchek, T., Chromy, B.A., Hoeprich, P.D., Coleman, M.A., Kudlicki, W. (2008) Insertion of membrane proteins into discoidal membranes using a cell-free protein expression approach. J. Proteome Res. 7:3535–3542.

    Article  Google Scholar 

  • Keller, T., Schwarz, D., Bernhard, F., Dötsch, V., Hunte, C., Gorboulev, V., Koepsell, H. (2008) Cell-free expression and functional reconstitution of eukaryotic drug transporters. Biochemistry 47:4552–4564.

    Article  Google Scholar 

  • Kigawa, T. (2010) Cell-free protein production system with the E. coli crude extract for determination of protein folds. Methods Mol. Biol. 607:101–111.

    Article  Google Scholar 

  • Kigawa, T., Yabuki, T., Yoshida, Y., Tsutsui, M., Ito, Y., Shibata, T., Yokoyama, S. (1999) Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett. 442:15–19.

    Article  Google Scholar 

  • Kim, T.W., Keum, J.W., Oh, I.S., Choi, C.Y., Park, C.G., Kim, D.M. (2006) Simple procedures for the construction of a robust and cost-effective cell-free protein synthesis system. J. Biotechnol. 126:554–561.

    Article  Google Scholar 

  • Klammt, C., Lohr, F., Schäfer, B., Haase, W., Dötsch, V., Ruterjans, H., Glaubitz, C., Bernhard, F. (2004) High level cell-free expression and specific labeling of integral membrane proteins. Eur. J. Biochem. 271:568–580.

    Article  Google Scholar 

  • Klammt, C., Schwarz, D., Fendler, K., Haase, W., Dötsch, V., Bernhard, F. (2005) Evaluation of detergents for the soluble expression of α-helical and β-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system. FEBS J. 272:6024–6038

    Article  Google Scholar 

  • Klammt, C., Schwarz, D., Löhr, F., Schneider, B., Dötsch, V., Bernhard, F. (2006) Cell-free expression as an emerging technique for the large scale production of integral membrane protein. FEBS J. 273:4141–4153.

    Article  Google Scholar 

  • Klammt, C., Perrin, M.-H., Maslennikov, I., Renault, L., Krupa, M., Kwiatkowski, W., Stahlberg, H., Vale, W., Choe, S. (2011) Polymer-based cell-free expression of ligand-binding family B G protein-coupled receptors without detergents. Prot. Sci. 20:1030–1041.

    Article  Google Scholar 

  • Kleinschmidt, J.H. (2015) Folding of β-barrel membrane proteins in lipid bilayers – Unassisted and assisted folding and insertion. Biochim. Biophys. Acta 1848:1927–1943.

    Article  Google Scholar 

  • Kleinschmidt, J.H., Popot, J.-L. (2014) Folding and stability of integral membrane proteins in amphipols. Arch. Biochem. Biophys. 564:327–343.

    Article  Google Scholar 

  • Kuruma, Y., Ueda, T. (2015) The PURE system for the cell-free synthesis of membrane proteins. Nat. Protoc. 10:1328–1344.

    Article  Google Scholar 

  • Kuruma, Y., Suzuki, T., Ueda, T. (2010) Production of multi-subunit complexes on liposome through an E. coli cell-free expression system. Methods Mol. Biol. 607:161–171.

    Article  Google Scholar 

  • LaGuerre, A., Löhr, F., Bernhard, F., Dötsch, V. (2015) Labeling of membrane proteins by cell-free expression. Meth. Enzymol. 563:367–388.

    Article  Google Scholar 

  • Lyukmanova, E.N., Shenkarev, Z.O., Khabibullina, N.F., Kopeina, G.S., Shulepko, M.A., Paramonov, A.S., Mineev, K.S., Tikhonov, R.V., Shingarova, L.N., Petrovskaya, L.E., Dolgikh, D.A., Arseniev, A.S., Kirpichnikov, M.P. (2012) Lipid-protein nanodiscs for cell-free production of integral membrane proteins in a soluble and folded state: Comparison with detergent micelles, bicelles and liposomes. Biochim. Biophys. Acta 1818:349–358.

    Article  Google Scholar 

  • Maeda, S., Schertler, G.F.X. (2013) Production of GPCR and GPCR complexes for structure determination. Curr. Opin. Struct. Biol. 23:381–392.

    Article  Google Scholar 

  • Maslennikov, I., Klammt, C., Hwang, E., Kefala, G., Okamura, M., Esquivies, L., Mörs, K., Glaubitz, C., Kwiatkowski, W., Jeon, Y.H., Choe, S. (2010) Membrane domain structures of three classes of histidine kinase receptors by cell-free expression and rapid NMR analysis. Proc. Natl. Acad. Sci. USA 107:10902–10907.

    Article  ADS  Google Scholar 

  • Matsubayashi, H., Kuruma, Y., Ueda, T. (2014) In vitro synthesis of the E. coli Sec translocon from DNA. Angew. Chem. Int. Ed. Engl. 53:7535–7538.

    Article  Google Scholar 

  • Nirenberg, M.W., Matthaei, J.H. (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc. Natl. Acad. Sci. USA 47:1588–1602.

    Article  ADS  Google Scholar 

  • Niwa, T., Sasaki, Y., Uemura, E., Nakamura, S., Akiyama, M., Ando, M., Sawada, S., Mukai, S.A., Ueda, T., Taguchi, H., Akiyoshi, K. (2015) Comprehensive study of liposome-assisted synthesis of membrane proteins using a reconstituted cell-free translation system. Sci. Rep. 5:18025.

    Article  ADS  Google Scholar 

  • Otzen, D.E., Andersen, K.K. (2013) Folding of outer membrane proteins. Arch. Biochem. Biophys. 531:34–43.

    Article  Google Scholar 

  • Park, K.-H., Berrier, C., Lebaupain, F., Pucci, B., Popot, J.-L., Ghazi, A., Zito, F. (2007) Fluorinated and hemifluorinated surfactants as alternatives to detergents for membrane protein cell-free synthesis. Biochem. J. 403:183–187.

    Article  Google Scholar 

  • Park, K.-H., Billon-Denis, E., Dahmane, T., Lebaupain, F., Pucci, B., Breyton, C., Zito, F. (2011) In the cauldron of cell-free synthesis of membrane proteins: Playing with new surfactants. New Biotech. 28:255–261.

    Article  Google Scholar 

  • Periasamy, A., Shadiac, N., Amalraj, A., Garajová, S., Nagarajan, Y., Waters, S., Mertens, H.D.T., Hrmova, M. (2013) Cell-free protein synthesis of membrane (1,3)-β-d-glucan (curdlan) synthase: co-translational insertion in liposomes and reconstitution in nanodiscs. Biochim. Biophys. Acta 1828:743–757.

    Article  Google Scholar 

  • Picard, M., Dahmane, T., Garrigos, M., Gauron, C., Giusti, F., le Maire, M., Popot, J.-L., Champeil, P. (2006) Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study. Biochemistry 45:1861–1869.

    Article  Google Scholar 

  • Popot, J.L. (2014) Folding membrane proteins in vitro: A table and some comments. Arch. Biochem. Biophys. 564:314–326.

    Article  ADS  Google Scholar 

  • Popot, J.-L., Althoff, T., Bagnard, D., Banères, J.-L., Bazzacco, P., Billon-Denis, E., Catoire, L.J., Champeil, P., Charvolin, D., Cocco, M.J., Crémel, G., Dahmane, T., de la Maza, L.M., Ebel, C., Gabel, F., Giusti, F., Gohon, Y., Goormaghtigh, E., Guittet, E., Kleinschmidt, J.H., Kühlbrandt, W., Le Bon, C., Martinez, K.L., Picard, M., Pucci, B., Rappaport, F., Sachs, J.N., Tribet, C., van Heijenoort, C., Wien, F., Zito, F., Zoonens, M. (2011) Amphipols from A to Z. Annu. Rev. Biophys. 40:379–408.

    Article  Google Scholar 

  • Proverbio, D., Roos, C., Beyermann, M., Orbán, E., Dötsch, V., Bernhard, F. (2013) Functional properties of cell-free expressed human endothelin A and endothelin B receptors in artificial membrane environments. Biochim. Biophys. Acta 1828:2182–2192.

    Article  Google Scholar 

  • Proverbio, D., Henrich, E., Orbán, E., Dötsch, V., Bernhard, F. (2014) Membrane protein quality control in cell-free expression systems: Tools, strategies and case studies, in: Mus-Veteau, I., ed., Membrane Proteins Production for Structural Analysis. Springer, New York, pp. 45–70.

    Google Scholar 

  • Rajesh, S., Knowles, T.J., Overduin, M. (2011) Production of membrane proteins without cells or detergents. New Biotechnol. 28:250–254.

    Article  Google Scholar 

  • Reckel, S., Gottstein, G., Stehle, J., Löhr, F., Verhoefen, M.-K., Takeda, M., Silvers, R., Kainosho, M., Glaubitz, C., Wachtveitl, J., Bernhard, F., Schwalbe, H., Güntert, P.G., Dötsch, V. (2011) Solution NMR structure of proteorhodopsin. Angew. Chem. Int. Ed. 50:11942–11946.

    Article  Google Scholar 

  • Rues, R.-B., Orbán, E., Dötsch, V., Bernhard, F. (2014) Cell-free expression of G protein-coupled receptors: new pipelines for challenging targets. Biol. Chem. 395:1425–1434.

    Article  Google Scholar 

  • Rues, R.-B., Henrich, E., Boland, C., Caffrey, M., Bernhard, F. (2016) Cell-free production of membrane proteins in Escherichia coli lysates for functional and structural studies. Methods Mol. Biol. 1432:1–21.

    Article  Google Scholar 

  • Sachse, R., Dondapati, S.K., Fenz, S.F., Schmidt, T., Kubick, S. (2014) Membrane protein synthesis in cell-free systems: From bio-mimetic systems to bio-membranes. FEBS Lett. 588:2774–2781.

    Article  Google Scholar 

  • Shadiac, N., Nagarajan, Y., Waters, S., Hrmova, M. (2013) Close allies in membrane protein research: Cell-free synthesis and nanotechnology. Mol. Membr. Biol. 30:229–245.

    Article  Google Scholar 

  • Sharma, K.S., Durand, G., Gabel, F., Bazzacco, P., Le Bon, C., Billon-Denis, E., Catoire, L.J., Popot, J.-L., Ebel, C., Pucci, B. (2012) Non-ionic amphiphilic homopolymers: Synthesis, solution properties, and biochemical validation. Langmuir 28:4625–4639.

    Article  Google Scholar 

  • Shenkarev, Z.O., Lyukmanova, E.N., Butenko, I.O., Petrovskaya, L.E., Paramonov, A.S., Shulepko, M.A., Nekrasova, O.V., Kirpichnikov, M.P., Arseniev, A.S. (2013) Lipid-protein nanodiscs promote in vitro folding of transmembrane domains of multi-helical and multimeric membrane proteins. Biochim. Biophys. Acta 1828:776–784.

    Article  Google Scholar 

  • Shirokov, V.A., Kommer, A., Kolb, V.A., Spirin, A.S. (2007) Continuous-exchange protein-synthesizing systems. Methods Mol. Biol. 375:19–55.

    Google Scholar 

  • Sonar, S., Patel, N., Fischer, W., Rothschild, K.J. (1993) Cell-free synthesis, functional refolding, and spectroscopic characterization of bacteriorhodopsin, an integral membrane protein. Biochemistry 32:13777–13781.

    Article  Google Scholar 

  • Spirin, A.S., Baranov, V.I., Ryabova, L., Ovodov, S.Y., Alakhov, Y.B. (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242:1162–1164.

    Article  ADS  Google Scholar 

  • Tu, D., Blaha, G., Moore, P.B., Steitz, T.A. (2005) Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121:257–270.

    Article  Google Scholar 

  • Uhlemann, E.M., Pierson, H.E., Fillingame, R.H., Dmitriev, O.Y. (2012) Cell-free synthesis of membrane subunits of ATP synthase in phospholipid bicelles: NMR shows subunit fold similar to the protein in the cell membrane. Prot. Sci. 21:279–288.

    Article  Google Scholar 

  • Van Gelder, P., De Cock, H., Tommassen, J. (1994) Detergent-induced folding of the outer-membrane protein PhoE, a pore protein induced by phosphate limitation. Eur. J. Biochem. 226:783–787.

    Article  Google Scholar 

  • Wada, T., Shimono, K., Kikukawa, T., Hato, M., Shinya, N., Kim, S.Y., Kimura-Someya, T., Shirouzu, M., Tamogami, J., Miyauchi, S., Jung, K.H., Kamo, N., Yokoyama, S. (2011) Crystal structure of the eukaryotic light-driven proton-pumping rhodopsin, Acetabularia rhodopsin II, from marine alga. J. Mol. Biol. 411:986–998.

    Article  Google Scholar 

  • Wang, X.Q., Corin, K., Baaske, P., Wienken, C.J., Jerabek-Willemsen, M., Duhr, S., Braun, D., Zhang, S.G. (2011) Peptide surfactants for cell-free production of functional G protein-coupled receptors. Proc. Natl. Acad. Sci. USA 108:9049–9054.

    Article  ADS  Google Scholar 

  • Wuu, J.J., Swartz, J.R. (2008) High yield cell-free production of integral membrane proteins without refolding or detergents. Biochim. Biophys. Acta 1778:1237–1250.

    Article  Google Scholar 

  • Zemella, A., Thoring, L., Hoffmeister, C., Kubick, S. (2015) Cell-free protein synthesis: Pros and cons of prokaryotic and eukaryotic systems. ChemBioChem 16:2420–2431.

    Article  Google Scholar 

  • Zoonens, M., Popot, J.-L. (2014) Amphipols for each season. J. Membr. Biol. 247:759–796.

    Article  Google Scholar 

  • Zoonens, M., Zito, F., Martinez, K.L., Popot, J.-L. (2014) Amphipols: a general introduction and some protocols, in: Mus-Veteau, I., ed., Membrane Proteins Production for Structural Analysis. Springer, New York, Heidelberg, Dordrecht, London, pp. 173–203.

    Google Scholar 

  • Zubay, G. (1973) In vitro synthesis of protein in microbial systems. Annu. Rev. Genet. 7:267–287.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Popot, JL. (2018). Amphipol-Assisted Cell-Free Expression of Membrane Proteins. In: Membrane Proteins in Aqueous Solutions. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-73148-3_7

Download citation

Publish with us

Policies and ethics