Skip to main content

Amphipols and Membrane Protein Crystallization

  • Chapter
  • First Online:
  • 1510 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Summary

X-ray crystallography is the field of structural biology to which, to date, amphipols have contributed the least. Complexes formed from a membrane protein (MP) and the best characterized amphipol, A8-35, have stubbornly refused to crystallize, whereas ternary MP/A8-35/detergent complexes yielded crystals diffracting to low resolution. Plausible causes of these difficulties and possible ways to alleviate them will be discussed in relation to solution measurements and other data. New tools are being developed, including more adequate amphipols. An alternative approach relying on the use of amphipols to deliver membrane proteins to a lipidic mesophase, where they do crystallize, has been explored with very promising results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agah, S., Faham, S. (2012) Crystallization of membrane proteins in bicelles. Methods Mol. Biol. 914:3–16.

    Google Scholar 

  • Althoff, T., Mills, D.J., Popot, J.-L., Kühlbrandt, W. (2011) Assembly of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J. 30:4652–4664.

    Article  Google Scholar 

  • Arunmanee, W., Harris, J.R., Lakey, J.H. (2014) Outer membrane protein F stabilised with minimal amphipol forms linear arrays and LPS-dependent 2D crystals. J. Membr. Biol. 247:949–956.

    Article  Google Scholar 

  • Bazzacco, P., Billon-Denis, E., Sharma, K.S., Catoire, L.J., Mary, S., Le Bon, C., Point, E., Banères, J.-L., Durand, G., Zito, F., Pucci, B., Popot, J.-L. (2012) Non-ionic homopolymeric amphipols: Application to membrane protein folding, cell-free synthesis, and solution NMR. Biochemistry 51:1416–1430.

    Article  Google Scholar 

  • Berger, B.W., Gendron, C.M., Robinson, C.R., Kaler, E.W., Lenhoff, A.M. (2005) The role of protein and surfactant interactions in membrane-protein crystallization. Acta Crystallogr. D 61:724–730.

    Article  Google Scholar 

  • Berry, E.A., Guergova-Kuras, M., Huang, L.-S., Crofts, A.R. (2000) Structure and function of cytochrome bc1 complexes. Annu. Rev. Biochem. 69:1005–1075.

    Article  Google Scholar 

  • Berry, E.A., Huang, L.-S., DeRose, V. (1991) Ubiquinol-cytochrome c oxidoreductase from higher plants. Isolation and characterization of the bc1 complex from potato tuber mitochondria. J. Biol. Chem. 266:9064–9077.

    Google Scholar 

  • Binz, H.K., Stumpp, M.T., Forrer, P., Amstutz, P., Plückthun, A. (2003) Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J. Mol. Biol. 332:489–503.

    Article  Google Scholar 

  • Boersma, Y.L., Plückthun, A. (2011) DARPins and other repeat protein scaffolds: advances in engineering and applications. Curr. Opin. Biotechnol. 22:849–857.

    Article  Google Scholar 

  • Bogorodskiy, A., Frolov, F., Mishin, A., Round, E., Polovinkin, V., Cherezov, V., Gordeliy, V., Büldt, G., Gensch, T., Borshchevskiy’, V. (2015) Nucleation and growth of membrane protein crystals in meso–A fluorescence microscopy study. Cryst. Growth Des. 15:5656–5660.

    Article  Google Scholar 

  • Borshchevskiy, V.I., Round, E.S., Popov, A.N., Büldt, G., Gordeliy, V.I. (2011) X-ray-radiation-induced changes in bacteriorhodopsin structure. J. Mol. Biol. 409:813–825.

    Article  Google Scholar 

  • Boutet, S., Lomb, L., Williams, G.J., Barends, T.R.M., Aquila, A., Doak, R.B., Weierstall, U., DePonte, D.P., Steinbrener, J., Shoeman, R.L., Messerschmidt, M., Barty, A., White, T.A., Kassemeyer, S., Kirian, R.A., Seibert, M.M., Montanez, P.A., Kenney, C., Herbst, R., Hart, P., Pines, J., Haller, G., Gruner, S.M., Philipp, H.T., Tate, M.W., Hromalik, M., Koerner, L.J., Bakel, N., Morse, J., Ghonsalves, W., Arnlund, D., Bogan, M.J., Caleman, C., Fromme, R., Hampton, C.Y., Hunter, M.S., Johansson, L.C., Katona, G., Kupitz, C., Liang, M., Martin, A.V., Nass, K., Redecke, L., Stellato, F., Timneanu, N., Wang, D., Zatsepin, N.A., Schafer, D., Defever, J., Neutze, R., Fromme, P., Spence, J.C.H., Chapman, H.N., Schlichting, I. (2012) High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–364.

    Article  ADS  Google Scholar 

  • Bowie, J.U. (2001) Stabilizing membrane proteins. Curr. Opin. Struct. Biol. 11:397–402.

    Article  Google Scholar 

  • Breyton, C., Tribet, C., Olive, J., Dubacq, J.-P., Popot, J.-L. (1997) Dimer to monomer conversion of the cytochrome b6 f complex: causes and consequences. J. Biol. Chem. 272:21892–21900.

    Article  Google Scholar 

  • Broecker, J., Eger, B.T., Ernst, O.P. (2017) Crystallogenesis of membrane proteins mediated by polymer-bounded lipid nanodiscs. Structure 25:384–392.

    Article  Google Scholar 

  • Caffrey, M. (2003) Membrane protein crystallization. J. Struct. Biol. 142:108–132.

    Article  Google Scholar 

  • Caffrey, M. (2009) Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Annu. Rev. Biophys. 38:29–51.

    Article  Google Scholar 

  • Caffrey, M. (2011) Crystallizing membrane proteins for structure-function studies using lipidic mesophases. Biochem. Soc. Trans. 39:725–732.

    Article  Google Scholar 

  • Caffrey, M. (2015) A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr. F 71:3–18.

    Article  Google Scholar 

  • Catoire, L.J., Zoonens, M., van Heijenoort, C., Giusti, F., Guittet, E., Popot, J.-L. (2010) Solution NMR mapping of water-accessible residues in the transmembrane β-barrel of OmpX. Eur. Biophys. J. 39:623–630.

    Article  Google Scholar 

  • Chae, P.S., Rasmussen, S.G.F., Rana, R., Gotfryd, K., Chandra, R., Goren, M.A., Kruse, A.C., Nurva, S., Loland, C.J., Pierre, Y., Drew, D., Popot, J.-L., Picot, D., Fox, B.G., Guan, L., Gether, U., Byrne, B., Kobilka, B.K., Gellman, S.H. (2010) Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat. Methods 7:1003–1008.

    Article  Google Scholar 

  • Champeil, P., Menguy, T., Tribet, C., Popot, J.-L., le Maire, M. (2000) Interaction of amphipols with the sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 275:18623–18637.

    Article  Google Scholar 

  • Chapman, H.N., Fromme, P., Barty, A., White, T.A., Kirian, R.A., Aquila, A., Hunter, M.S., Schulz, J., DePonte, D.P., Weierstall, U., Doak, R.B., Maia, F.R.N.C., Martin, A.V., Schlichting, I., Lomb, L., Coppola, N., Shoeman, R.L., Epp, S.W., Hartmann, R., Rolles, D., Rudenko, A., Foucar, L., Kimmel, N., Weidenspointner, G., Holl, P., Liang, M., Barthelmess, M., Caleman, C., Boutet, S., Bogan, M.J., Krzywinski, J., Bostedt, C., Bajt, S., Gumprecht, L., Rudek, B., Erk, B., Schmidt, C., Hömke, A., Reich, C., Pietschner, D., Strüder, L., Hauser, G., Gorke, H., Ullrich, J., Herrmann, S., Schaller, G., Schopper, F., Soltau, H., Kühnel, K.-U., Messerschmidt, M., Bozek, J.D., Hau-Riege, S.P., Frank, M., Hampton, C.Y., Sierra, R.G., Starodub, D., Williams, G.J., Hajdu, J., Timneanu, N., Seibert, M.M., Andreasson, J., Rocker, A., Jönsson, O., Svenda, M., Stern, S., Nass, K., Andritschke, R., Schröter, C.-D., Krasniqi, F., Bott, M., Schmidt, K.E., Wang, X.-Y., Grotjohann, I., Holton, J.M., Barends, T.R.M., Neutze, R., Marchesini, S., Fromme, R., Schorb, S., Rupp, D., Adolph, M., Gorkhover, T., Andersson, I., Hirsemann, H., Potdevin, G., Graafsma, H., Nilsson, B., Spence, J.C.H. (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77.

    Article  ADS  Google Scholar 

  • Charvolin, D., Picard, M., Huang, L.-S., Berry, E.A., Popot, J.-L. (2014) Solution behavior and crystallization of cytochrome bc1 in the presence of amphipols. J. Membr. Biol. 247:981–996.

    Article  Google Scholar 

  • Cherezov, V. (2011) Lipidic cubic phase technologies for membrane protein structural studies. Curr. Opin. Struct. Biol. 21:559–566.

    Article  Google Scholar 

  • Cherezov, V., J. C, Papiz, M.Z., Caffrey, M. (2006) Room to move: crystallizing membrane proteins in swollen lipidic mesophases. J. Mol. Biol. 357:1605–1618.

    Article  Google Scholar 

  • Cherezov, V., Rosenbaum, D.M., Hanson, M.A., Rasmussen, S.G., Thian, F.S., Kobilka, T.S., Choi, H.J., Kuhn, P., Weis, W.I., Kobilka, B.K., Stevens, R.C. (2007) High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318:1258–1265.

    Article  ADS  Google Scholar 

  • Cowan, S.W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Pauptit, R.A., Jansonius, J.N., Rosenbusch, J.P. (1992) Crystal structures explain functional properties of two E. coli porins. Nature 358:727–733.

    Article  ADS  Google Scholar 

  • Cuesta-Seijo, J.A., Neale, C., Khan, M.A., Moktar, J., Tran, C.D., Bishop, R.E., Pomès, R., Privé, G.G. (2010) PagP crystallized from SDS/cosolvent reveals the route for phospholipid access to the hydrocarbon ruler. Structure 18:1210–1219.

    Article  Google Scholar 

  • Dahmane, T., Damian, M., Mary, S., Popot, J.-L., Banères, J.-L. (2009) Amphipol-assisted in vitro folding of G protein-coupled receptors. Biochemistry 48:6516–6521.

    Article  Google Scholar 

  • Dahmane, T., Rappaport, F., Popot, J.-L. (2013) Amphipol-assisted folding of bacteriorhodopsin in the presence and absence of lipids. Functional consequences. Eur. Biophys. J. 42:85–101.

    Article  Google Scholar 

  • Deisenhofer, J., Epp, O., Miki, K., Huber, R., Michel, H. (1984) X-ray structure analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J. Mol. Biol. 180:385–398.

    Article  Google Scholar 

  • Deisenhofer, J., Epp, O., Miki, K., Huber, R., Michel, H. (1985) Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Å resolution. Nature 318:618–624.

    Article  ADS  Google Scholar 

  • Deisenhofer, J., Michel, H. (1989) The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis. EMBO J. 8:2149–2170.

    Google Scholar 

  • Diab, C., Tribet, C., Gohon, Y., Popot, J.-L., Winnik, F.M. (2007a) Complexation of integral membrane proteins by phosphorylcholine-based amphipols. Biochim. Biophys. Acta 1768:2737–2747.

    Article  Google Scholar 

  • Diab, C., Winnik, F.M., Tribet, C. (2007b) Enthalpy of interaction and binding isotherms of non-ionic surfactants onto micellar amphiphilic polymers (amphipols). Langmuir 23:3025–3035.

    Article  Google Scholar 

  • Egloff, P., Hillenbrand, M., Klenk, C., Batyuk, A., Heine, P., Balada, S., Schlinkmann, K.M., Scott, D.J., Schütz, M., Plückthun, A. (2014) Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proc. Natl. Acad. Sci. USA 111:E655–E662.

    Article  ADS  Google Scholar 

  • Faham, S., Bowie, J.U. (2002) Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J. Mol. Biol. 316:1–6.

    Article  Google Scholar 

  • Ferrandez, Y., Dezi, M., Bosco, M., Urvoas, A., Valério, M., Le Bon, C., Giusti, F., Broutin, I., Durand, G., Polidori, A., Popot, J.-L., Picard, M., Minard, P. (2014) Amphipol-mediated screening of molecular orthoses specific for membrane protein targets. J. Membr. Biol. 247:925–940.

    Article  Google Scholar 

  • Garavito, R.M., Jenkins, J., Jansonius, J.N., Karlsson, R., Rosenbusch, J.P. (1983) X-ray diffraction analysis of matrix porin, an integral membrane protein from Escherichia coli outer membranes. J. Mol. Biol. 164:313–327.

    Article  Google Scholar 

  • Garavito, R.M., Picot, D., Loll, P.J. (1996) Strategies for crystallizing membrane proteins. J. Bioenerg. Biomembr. 28:13–27.

    Article  Google Scholar 

  • Garavito, R.M., Rosenbusch, J.P. (1980) Three-dimensional crystals of an integral membrane protein: an initial X-ray analysis. J. Cell Biol. 86:327–329.

    Article  Google Scholar 

  • Giusti, F., Rieger, J., Catoire, L., Qian, S., Calabrese, A.N., Watkinson, T.G., Casiraghi, M., Radford, S.E., Ashcroft, A.E., Popot, J.-L. (2014) Synthesis, characterization and applications of a perdeuterated amphipol. J. Membr. Biol. 247:909–924.

    Article  Google Scholar 

  • Gohon, Y., Dahmane, T., Ruigrok, R., Schuck, P., Charvolin, D., Rappaport, F., Timmins, P., Engelman, D.M., Tribet, C., Popot, J.-L., Ebel, C. (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys. J. 94:3523–3537.

    Article  ADS  Google Scholar 

  • Gourdon, P., Andersen, J.L., Langmach, K., Hein, K.L., Bublitz, M., Pedersen, B.P., Liu, X.-Y., Yatime, L., Nyblom, M., Nielsen, T.T., Olesen, C., Møller, J.V., Nissen, P., Morth, J.P. (2011) HiLiDe–systematic approach to membrane protein crystallization in lipid and detergent. Cryst. Growth Des. 11:2098–2106.

    Article  Google Scholar 

  • Grigorieff, N., Ceska, T.A., Downing, K.H., Baldwin, J.M., Henderson, R. (1996) Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259:393–421.

    Article  Google Scholar 

  • Henderson, R. (1975) The structure of purple membrane from Halobacterium halobium: analysis of the X-ray diffraction pattern. J. Mol. Biol. 93:123–138.

    Article  Google Scholar 

  • Hibbs, R.E., Gouaux, E. (2011) Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474:54–60.

    Article  Google Scholar 

  • Hitscherich, C.J., Kaplan, J., Allaman, M., Wiencek, J., Loll, P.J. (2000) Static light scattering studies of OmpF porin: implications for integral membrane protein crystallization. Protein Sci. 9:1559–1566.

    Article  Google Scholar 

  • Hunte, C. (2001) Insights from the structure of the yeast cytochrome bc1 complex: crystallization of membrane proteins with antibody fragments. FEBS Lett. 504:126–132.

    Article  Google Scholar 

  • Hunte, C., Koepke, J., Lange, C., Roßmanith, T., Michel, H. (2000) Structure at 2.3 Å resolution of the cytochrome bc1 complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure 8:669–684.

    Article  Google Scholar 

  • Hunte, C., Richers, S. (2008) Lipids and membrane protein structures. Curr. Opin. Struct. Biol. 18:406–411.

    Article  Google Scholar 

  • Huynh, K.W., Cohen, M.R., Moiseenkova-Bell, V.Y. (2014) Application of amphipols for structure-functional analysis of TRP channels. J. Membr. Biol. 247:843–851.

    Article  Google Scholar 

  • Ishchenko, A., Abola, E., Cherezov, V. (2014) Lipidic cubic phase technologies for structural studies of membrane proteins, in: Mus-Veteau, I., ed., Membrane Proteins Production for Structural Analysis. Springer, New York, pp. 289–314.

    Google Scholar 

  • Ishchenko, A., Abola, E.E., Cherezov, V. (2017) Crystallization of membrane proteins: An overview. Methods Mol. Biol. 1607:117–141.

    Article  Google Scholar 

  • Israelachvili, J.N. (2011) Intermolecular and Surface Forces. 3rd ed., Elsevier/Academic Press, London, 450 p.

    Google Scholar 

  • Iwata, S., Lee, J.W., Okada, K., Lee, J.K., Iwata, M., Rasmussen, B., Link, T., Ramaswamy, S., Jap, B.K. (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281:64–71.

    Article  ADS  Google Scholar 

  • Johansson, L.C., Arnlund, D., White, T.A., Katona, G., DePonte, D.P., Weierstall, U., Doak, R.B., Shoeman, R.L., Lomb, L., Malmerberg, E., Davidsson, J., Nass, K., Liang, M., Andreasson, J., Aquila, A., Bajt, S., Barthelmess, M., Barty, A., Bogan, M.J., Bostedt, C., Bozek, J.D., Caleman, C., Coffee, R., Coppola, N., Ekeberg, T., Epp, S.W., Erk, B., Fleckenstein, H., Foucar, L., Graafsma, H., Gumprecht, L., Hajdu, J., Hampton, C.Y., Hartmann, R., Hartmann, A., Hauser, G., Hirsemann, H., Holl, P., Hunter, M.S., Kassemeyer, S., Kimmel, N., Kirian, R.A., Maia, F.R.N.C., Marchesini, S., Martin, A.V., Reich, C., Rolles, D., Rudek, B., Rudenko, A., Schlichting, I., Schulz, J., Seibert, M.M., Sierra, R.G., Soltau, H., Starodub, D., Stellato, F., Stern, S., Strüder, L., Timneanu, N., Ullrich, J., Wahlgren, W.Y., Wang, X., Weidenspointner, G., Wunderer, C., Fromme, P., Chapman, H.N., Spence, J.C.H., Neutze, R. (2012) Lipidic phase membrane protein serial femtosecond crystallography. Nat. Meth. 9:263–265.

    Article  Google Scholar 

  • Johansson, L.C., Wöhri, A.B., Katona, G., Engström, S., Neutze, R. (2009) Membrane protein crystallization from lipidic phases. Curr. Opin. Struct. Biol. 19:372–378.

    Article  Google Scholar 

  • Jones, T.A., Zhou, J.-Y., Cowan, S.J., Kjeldgaard, M. (1991) Improved methods for building protein models in electron density maps and the location of errors on these models. Acta Crystallogr. A 47:110–119.

    Article  Google Scholar 

  • Jost, C., Plückthun, A. (2014) Engineered proteins with desired specificity: DARPins, other alternative scaffolds and bispecific IgGs. Curr. Opin. Struct. Biol. 27:102–112.

    Article  Google Scholar 

  • Kang, H.J., Lee, C., Drew, D. (2013) Breaking the barriers in membrane protein crystallography. Int. J. Biochem. Cell Biol. 45:636–644.

    Article  Google Scholar 

  • Kang, Y., Zhou, X.E., Gao, X., He, Y., Liu, W., Ishchenko, A., Barty, A., White, T.A., Yefanov, O., Han, G.W., Xu, Q., deWaal, P.W., Ke, J., Tan, M.H.E., Zhang, C., Moeller, A., West, G.M., Pascal, B.D., Van Eps, N., Caro, L.N., Vishnivetskiy, S.A., Lee, R.J., Suino-Powell, K.M., Gu, X., Pal, K., Ma, J., Zhi, X., Boutet, S., Williams, G.J., Messerschmidt, M., Gati, C., Zatsepin, N.A., Wang, D., James, D., Basu, S., Roy-Chowdhury, S., Conrad, C.E., Coe, J., Liu, H., Lisova, S., Kupitz, C., Grotjohann, I., Fromme, R., Jiang, Y., Tan, M., Yang, H., Li, J., Wang, M., Zheng, Z., Li, D., Howe, N., Zhao, Y., Standfuss, J., Diederichs, K., Dong, Y., Potter, C.S., Carragher, B., Caffrey, M., Jiang, H., Chapman, H.N., Spence, J.C.H., Fromme, P., Weierstall, U., Ernst, O.P., Katritch, V., Gurevich, V.V., Griffin, P.R., Hubbell, W.L., Stevens, R.C., Cherezov, V., Melcher, K., Xu, E. (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–567.

    Article  ADS  Google Scholar 

  • Kleinschmidt, J.H., Popot, J.-L. (2014) Folding and stability of integral membrane proteins in amphipols. Arch. Biochem. Biophys. 564:327–343.

    Article  Google Scholar 

  • Kühlbrandt, W. (1988) Three-dimensional crystallization of membrane proteins. Quat. Rev. Biophys. 21:429–477.

    Article  Google Scholar 

  • Kupitz, C., Basu, S., Grotjohann, I., Fromme, R., Zatsepin, N.A., Rendek, K.N., Hunter, M.S., Shoeman, R.L., White, T.A., Wang, D., James, D., Yang, J.H., Cobb, D.E., Reeder, B., Sierra, R.G., Liu, H., Barty, A., Aquila, A.L., Deponte, D., Kirian, R.A., Bari, S., Bergkamp, J.J., Beyerlein, K.R., Bogan, M.J., Caleman, C., Chao, T.C., Conrad, C.E., Davis, K.M., Fleckenstein, H., Galli, L., Hau-Riege, S.P., Kassemeyer, S., Laksmono, H., Liang, M., Lomb, L., Marchesini, S., Martin, A.V., Messerschmidt, M., Milathianaki, D., Nass, K., Ros, A., Roy-Chowdhury, S., Schmidt, K., Seibert, M., Steinbrener, J., Stellato, F., Yan, L., Yoon, C., Moore, T.A., Moore, A.L., Pushkar, Y., Williams, G.J., Boutet, S., Doak, R.B., Weierstall, U., Frank, M., Chapman, H.N., Spence, J.C., Fromme, P. (2014) Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513:261–265.

    Article  ADS  Google Scholar 

  • Landau, E.M., Rosenbusch, J.P. (1996) Lipid cubic phases: A novel concept for the crystallization of membrane proteins. Proc. Natl. Acad. Sci. USA 93:14532–14535.

    Article  ADS  Google Scholar 

  • Lanyi, J.K. (2004) X-ray diffraction of bacteriorhodopsin photocycle intermediates. Mol. Membr. Biol. 21:143–150.

    Article  Google Scholar 

  • Le Bon, C., Popot, J.-L., Giusti, F. (2014) Labeling and functionalizing amphipols for biological applications. J. Membr. Biol. 247:797–814.

    Article  Google Scholar 

  • Li, D., Lee, J., Caffrey, M. (2011) Crystallizing membrane proteins in lipidic mesophases. A host lipid screen. Cryst. Growth Des. 11:530–537.

    Article  Google Scholar 

  • Li, D., Shah, S.T.A., Caffrey, M. (2013) Host lipid and temperature as important screening variables for crystallizing integral membrane proteins in lipidic mesophases. Trials with diacylglycerol kinase. Cryst. Growth Des. 13:2846–2857.

    Article  Google Scholar 

  • Liao, M., Cao, E., Julius, D., Cheng, Y. (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112.

    Article  ADS  Google Scholar 

  • Liao, M., Cao, E., Julius, D., Cheng, Y. (2014) Single particle electron cryo-microscopy of a mammalian ion channel. Curr. Opin. Struct. Biol. 27:1–7.

    Article  Google Scholar 

  • Lindblom, G., Rilfors, L. (1989) Cubic phases and isotropic structures formed by membrane lipids–possible biological relevance. Biochim. Biophys. Acta 988:221–256.

    Article  Google Scholar 

  • Liu, Z., Yan, H., Wang, K., Kuang, T., Zhang, J., Gui, L., An, X., Chang, W. (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–291.

    Article  ADS  Google Scholar 

  • Lluis, M.W., Godfroy, J.I., III, Yin, H. (2013) Protein engineering methods applied to membrane protein targets. Prot. Eng. Des. Sel. 26:91–100.

    Article  Google Scholar 

  • Loll, P.J. (2014) Membrane proteins, detergents and crystals: what is the state of the art? Acta Crystallogr. F 70:1576–1583.

    Article  Google Scholar 

  • Love, J., Mancia, F., Shapiro, L., Punta, M., Rost, B., Girvin, M., Wang, D.N., Zhou, M., Hunt, J.F., Szyperski, T., Gouaux, E., Mackinnon, R., McDermott, A., Honig, B., Inouye, M., Montelione, G., Hendrickson, W.A. (2010) The New York Consortium on Membrane Protein Structure (NYCOMPS): a high-throughput platform for structural genomics of integral membrane proteins. J. Struct. Funct. Genomics 11:191–199.

    Article  Google Scholar 

  • Luecke, H., Schobert, B., Richter, H.-T., Cartailler, J.-P., Lanyi, J.K. (1999) Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 291: 899–911.

    Article  Google Scholar 

  • Luecke, H., Schobert, B., Stagno, J., Imasheva, E.S., Wang, J.M., Balashov, S.P., Lanyi, J.K. (2008) Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc. Natl. Acad. Sci. USA 105:16561–16565.

    Article  ADS  Google Scholar 

  • Magnani, F., Shibata, Y., Serrano-Vega, M.J., Tate, C.G. (2008) Co-evolving stability and conformational homogeneity of the human adenosine A2a receptor. Proc. Natl. Acad. Sci. USA 105:10744–10749.

    Article  ADS  Google Scholar 

  • Martin-Garcia, J.M., Conrad, C.E., Coe, J., Roy-Chowdhury, S., Fromme, P. (2016) Serial femtosecond crystallography: A revolution in structural biology. Arch. Biochem. Biophys. 602:32–47.

    Article  Google Scholar 

  • Michel, H. (1982) Three-dimensional crystals of a membrane protein complex. The photosynthetic reaction centre from Rhodopseudomonas viridis. J. Mol. Biol. 158:567–572.

    Article  Google Scholar 

  • Michel, H. (1983) Crystallization of membrane proteins. Trends Biochem. Sci. 8:56–59.

    Article  Google Scholar 

  • Michel, H. (1991) Crystallization of Membrane Proteins. First ed. CRC Press, Boca Raton, 224 p.

    Google Scholar 

  • Michel, H., Epp, O., Deisenhofer, J. (1986) Pigment-protein interactions in the photosynthetic reaction centre from Rhodopseudomonas viridis. EMBO J. 5:2445–2451.

    Google Scholar 

  • Michel, H., Oesterhelt, D. (1980) Three-dimensional crystals of membrane proteins: bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 77:1283–1285.

    Article  ADS  Google Scholar 

  • Miller, J.L., Tate, C.G. (2011) Engineering an ultra-thermostable β1-adrenoceptor. J. Mol. Biol. 413:628–638.

    Article  Google Scholar 

  • Moraes, I., Gwyndaf Evans, G., Sanchez-Weatherby, J., Newstead, S., Stewart, P.D.S. (2014) Membrane protein structure determination–The next generation. Biochim. Biophys. Acta 1838:78–87.

    Article  Google Scholar 

  • Nagy, J.K., Kuhn Hoffmann, A., Keyes, M.H., Gray, D.N., Oxenoid, K., Sanders, C.R. (2001) Use of amphipathic polymers to deliver a membrane protein to lipid bilayers. FEBS Lett. 501:115–120.

    Article  Google Scholar 

  • Neutze, R., Brändén, G., Schertler, G.F. (2015) Membrane protein structural biology using X-ray free electron lasers. Curr. Opin. Struct. Biol. 33:115–125.

    Article  Google Scholar 

  • Neutze, R., Remco, W., van der Spoel, D., Weckert, E., Hajdu, J. (2000) Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406:752–757.

    Article  ADS  Google Scholar 

  • Nikolaev, M., Round, E., Gushchin, I., Polovinkin, V., Balandin, T., Kuzmichev, P., Shevchenko, V., Borshchevskiy, V., Kuklin, A., Round, A., Bernhard, F., Willbold, D., Büldt, G., Gordeliy, V. (2017) Integral membrane proteins can be crystallized directly from nanodiscs. Cryst. Growth Des. 17:945–948.

    Article  Google Scholar 

  • Nollert, P. (2004) Lipidic cubic phases as matrices for membrane protein crystallization. Methods 34:348–353.

    Article  Google Scholar 

  • Nollert, P. (2005) Membrane protein crystallization in amphiphile phases: practical and theoretical considerations. Prog. Biophys. Mol. Biol. 88:339–357.

    Article  Google Scholar 

  • Ostermeier, C., Harrenga, A., Ermler, U., Michel, H. (1997) Structure at 2.7 Å resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody Fv fragment. Proc. Natl. Acad. Sci. USA 94:10547–10553.

    Article  ADS  Google Scholar 

  • Ostermeier, C., Iwata, S., Ludwig, B., Michel, H. (1995) Fv fragment-mediated crystallization of the membrane protein bacterial cytochrome c oxidase. Nature Struct. Biol. 2:842–846.

    Article  Google Scholar 

  • Ostermeier, C., Michel, H. (1997) Crystallization of membrane proteins. Curr. Opin. Struct. Biol. 7:697–701.

    Article  Google Scholar 

  • Parker, J.L., Newstead, S. (2012) Current trends in α-helical membrane protein crystallization: An update. Prot. Sci. 21:1358–1365.

    Article  Google Scholar 

  • Pebay-Peyroula, E., Rummel, G., Rosenbusch, J.P., Landau, E. (1997) X-ray structure of bacteriorhodopsin at 2.5 Å from microcrystals grown in lipidic cubic phases. Science 277:1676–1881.

    Article  Google Scholar 

  • Perlmutter, J.D., Popot, J.-L., Sachs, J.N. (2014) Molecular dynamics simulations of a membrane protein/amphipol complex. J. Membr. Biol. 247:883–895.

    Article  Google Scholar 

  • Plückthun, A. (2015) Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu. Rev. Pharmacol. Toxicol. 55:489–511.

    Article  Google Scholar 

  • Pocanschi, C.L., Dahmane, T., Gohon, Y., Rappaport, F., Apell, H.-J., Kleinschmidt, J.H., Popot, J.-L. (2006) Amphipathic polymers: tools to fold integral membrane proteins to their active form. Biochemistry 45:13954–13961.

    Article  Google Scholar 

  • Polovinkin, V., Gushchin, I., Balandin, T., Chervakov, P., Round, E., Shevchenko, V., Popov, A., Borshchevskiy, V., Popot, J.-L., Gordeliy, V. (2014) High-resolution structure of a membrane protein transferred from amphipol to a lipidic mesophase. J. Membr. Biol. 247:997–1004.

    Article  Google Scholar 

  • Popot, J.-L. (2014) Folding membrane proteins in vitro: A table and some comments. Arch. Biochem. Biophys. 564:314–326.

    Article  ADS  Google Scholar 

  • Popot, J.-L., Berry, E.A., Charvolin, D., Creuzenet, C., Ebel, C., Engelman, D.M., Flötenmeyer, M., Giusti, F., Gohon, Y., Hervé, P., Hong, Q., Lakey, J.H., Leonard, K., Shuman, H.A., Timmins, P., Warschawski, D.E., Zito, F., Zoonens, M., Pucci, B., Tribet, C. (2003) Amphipols: polymeric surfactants for membrane biology research. Cell. Mol. Life Sci. 60:1559–1574.

    Article  Google Scholar 

  • Poulos, S., Morgan, J.L., Zimmer, J., Faham, S. (2015) Bicelles coming of age: an empirical approach to bicelle crystallization. Meth. Enzymol. 557:393–416.

    Article  Google Scholar 

  • Prata, C., Giusti, F., Gohon, Y., Pucci, B., Popot, J.-L., Tribet, C. (2001) Non-ionic amphiphilic polymers derived from tris(hydroxymethyl)-acrylamidomethane keep membrane proteins soluble and native in the absence of detergent. Biopolymers 56:77–84.

    Article  Google Scholar 

  • Privé, G.G. (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods 41:388–397.

    Article  Google Scholar 

  • Qiu, H., Caffrey, M. (2000) Phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials 21:223–234.

    Article  Google Scholar 

  • Rasmussen, S.G., Choi, H.J., Rosenbaum, D.M., Kobilka, T.S., Thian, F.S., Edwards, P.C., Burghammer, M., Ratnala, V.R., Sanishvili, R., Fischetti, R.F., Schertler, G.F., Weis, W.I., Kobilka, B.K. (2007) Crystal structure of the human β2 adrenergic G protein-coupled receptor. Nature 450:383–387.

    Article  ADS  Google Scholar 

  • Rasmussen, S.G.F., Choi, H.-J., Fung, J.J., Pardon, E., Casarosa, P., Chae, P.S., DeVree, B.T., Rosenbaum, D.M., Thian, F.S., Kobilka, T.S., Schnapp, A., Konetzki, I., Sunahara, R.K., Gellman, S.H., Pautsch, A., Steyaert, J., Weis, W.I., Kobilka, B.K. (2011) Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469:175–180.

    Article  ADS  Google Scholar 

  • Rosenbaum, D.M., Cherezov, V., Hanson, M.A., Rasmussen, S.G., Thian, F.S., Kobilka, T.S., Choi, H.J., Yao, X.J., Weis, W.I., Stevens, R.C., Kobilka, B.K. (2007) GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318:1266–1273.

    Article  ADS  Google Scholar 

  • Roth, M., Lewitt-Bentley, A., Michel, H., Deisenhofer, J., Huber, R., Oesterhelt, D. (1989) Detergent structure in crystals of a bacterial photosynthetic reaction center. Nature 340:659–662.

    Article  ADS  Google Scholar 

  • Rummel, G., Hardmeyer, A., Widmer, C., Chiu, M.L., Nollert, P., Locher, K.P., Pedruzzi, I.I., Landau, E.M., Rosenbusch, J.P. (1998) Lipidic cubic phases: new matrices for the three-dimensional crystallization of membrane proteins. J. Struct. Biol. 121:82–91.

    Article  Google Scholar 

  • Sadaf, A., Cho, K.H., Byrne, B., Chae, P.S. (2015) Amphipathic agents for membrane protein study. Meth. Enzymol. 557:57–94.

    Article  Google Scholar 

  • Sarkar, C.A., Dodevski, I., Kenig, M., Dudli, S., Mohr, A., Hermans, E., Plückthun, A. (2008) Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity. Proc. Natl. Acad. Sci. USA 105:14808–14813.

    Article  ADS  Google Scholar 

  • Schulz, G.E. (2011) A new classification of membrane protein crystals. J. Mol. Biol. 407:640–646.

    Article  Google Scholar 

  • Sennhauser, G., Grütter, M.G. (2008) Chaperone-assisted crystallography with DARPins. Structure 16:1443–1453.

    Article  Google Scholar 

  • Serrano-Vega, M.J., Magnani, F., Shibata, Y., Tate, C.G. (2008) Conformational thermostabilization of the β1-adrenergic receptor in a detergent-resistant form. Proc. Natl. Acad. Sci. USA 105:877–882.

    Article  ADS  Google Scholar 

  • Sharma, K.S., Durand, G., Gabel, F., Bazzacco, P., Le Bon, C., Billon-Denis, E., Catoire, L.J., Popot, J.-L., Ebel, C., Pucci, B. (2012) Non-ionic amphiphilic homopolymers: Synthesis, solution properties, and biochemical validation. Langmuir 28:4625–4639.

    Article  Google Scholar 

  • Shibata, Y., White, J.F., Serrano-Vega, M.J., Magnani, F., Aloia, A.L., Grisshammer, R., Tate, C.G. (2009) Thermostabilization of the neurotensin receptor NTS1. J. Mol. Biol. 390:262–277.

    Article  Google Scholar 

  • Smith, A.L. (1967) Preparation, properties, and conditions for assay of mitochondria: slaughterhouse material, small scale. Methods Enzymol. 10:81–86.

    Article  Google Scholar 

  • Suga, M., Akita, F., Sugahara, M., Kubo, M., Nakajima, Y., Nakane, T., Yamashita, K., Umena, Y., Nakabayashi, M., Yamane, T., Nakano, T., Suzuki, M., Masuda, T., Inoue, S., Kimura, T., Nomura, T., Yonekura, S., Yu, L.J., Sakamoto, T., Motomura, T., Chen, J.H., Kato, Y., Noguchi, T., Tono, K., Joti, Y., Kameshima, T., Hatsui, T., Nango, E., Tanaka, R., Naitow, H., Matsuura, Y., Yamashita, A., Yamamoto, M., Nureki, O., Yabashi, M., Ishikawa, T., Iwata, S., Shen, J.R. (2017) Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 543:131–135.

    Article  ADS  Google Scholar 

  • Takeda, K., Sato, H., Hino, T., Kono, M., Fukuda, K., Sakurai, I., Okada, T., Kouyama, T. (1998) A novel three-dimensional crystal of bacteriorhodopsin obtained by successive fusion of the vesicular assemblies. J. Mol. Biol. 283:463–474.

    Article  Google Scholar 

  • Tanford, C. (1980) The Hydrophobic Effect: Formation of Micelles and Biological Membranes. 2nd ed., John Wiley & Sons, New York, 233 p.

    Google Scholar 

  • Tate, C.G. (2010) Practical considerations of membrane protein instability for purification and crystallisation, in: Mus-Veteau, I., ed., Membrane Protein Expression. The Humana Press, Totowa, New Jersey, USA, pp. 187–203.

    Chapter  Google Scholar 

  • Tribet, C., Audebert, R., Popot, J.-L. (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc. Natl. Acad. Sci. USA 93:15047–15050.

    Article  ADS  Google Scholar 

  • Tribet, C., Audebert, R., Popot, J.-L. (1997) Stabilization of hydrophobic colloidal dispersions in water with amphiphilic polymers: Application to integral membrane proteins. Langmuir 13:5570–5576.

    Article  Google Scholar 

  • Tribet, C., Diab, C., Dahmane, T., Zoonens, M., Popot, J.-L., Winnik, F.M. (2009) Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir 25:12623–12634.

    Article  Google Scholar 

  • Ujwal, R., Bowie, J.U. (2011) Crystallizing membrane proteins using lipidic bicelles. Methods 55:337–341.

    Article  Google Scholar 

  • Ujwal, R., Cascio, D., Colletier, J.-P., Faham, S., Zhang, J., Toro, L., Ping, P., Abramson, J. (2008) The crystal structure of mouse VDAC1 at 2.3 Å resolution reveals mechanistic insights into metabolite gating. Proc. Natl. Acad. Sci. USA 105:17742–17747.

    Article  ADS  Google Scholar 

  • Urvoas, A., Valerio-Lepiniec, M., Minard, P. (2012) Artificial proteins from combinatorial approaches. Trends Biotechnol. 30:512–520.

    Article  Google Scholar 

  • Uysal, S., Vásquez, V., Tereshko, V., Esaki, K., Fellouse, F.A., Sidhu, S.S., Koide, S., Perozo, E., Kossiakoff, A. (2009) Crystal structure of full-length KcsA in its closed conformation. Proc. Natl. Acad. Sci. USA 106:6644–6649.

    Article  ADS  Google Scholar 

  • Vaidehi, N., Grisshammer, R., Tate, C.G. (2016) How can mutations thermostabilize G protein-coupled receptors? Trends Pharmacol. Sci. 37:37–46.

    Article  Google Scholar 

  • Vinothkumar, K.R. (2011) Structure of rhomboid protease in a lipid environment. J. Mol. Biol. 407:232–247.

    Article  Google Scholar 

  • Wadsten, P., Wöhri, A.B., Snijder, A., Katona, G., Gardiner, A.T., Cogdell, R.J., Neutze, R., Engström, S. (2006) Lipidic sponge phase crystallization of membrane proteins. J. Mol. Biol. 364:44–53.

    Article  Google Scholar 

  • Wiener, M.C. (2001) Existing and emergent roles for surfactants in the three-dimensional crystallization of integral membrane proteins. Curr. Opin. Colloid Interface Sci. 6:412–419.

    Article  Google Scholar 

  • Wiener, M.C. (2004) A pedestrian guide to membrane protein crystallization. Methods 34:364–372.

    Article  Google Scholar 

  • Wöhri, A.B., Johansson, L.C., Wadsten-Hindrichsen, P., Wahlgren, W.Y., Fischer, G., Horsefield, R., Katona, G., Nyblom, M., Oberg, F., Young, G., Cogdell, R.J., Fraser, N.J., Engström, S., Neutze, R. (2008) A lipidic-sponge phase screen for membrane protein crystallization. Structure 16:1003–1009.

    Article  Google Scholar 

  • Zhang, Q., Tao, H., Hong, W.-X. (2011) New amphiphiles for membrane protein structural biology. Methods 55:318–323.

    Article  Google Scholar 

  • Zhang, Z., Huang, L.-S., Shulmeister, V.M., Chi, Y.-I., Kim, K.K., Hung, L.-W., Crofts, A.R., Berry, E.A., Kim, S.-H. (1998) Electron transfer by domain movement in cytochrome bc1. Nature 392:677–684.

    Article  ADS  Google Scholar 

  • Zhou, Y., Bowie, J.U. (2000) Building a thermostable membrane protein. J. Biol. Chem. 275:6975–6979.

    Article  Google Scholar 

  • Zhou, Y., Morais-Cabral, J.H., Kaufman, A., MacKinnon, R. (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414:43–48.

    Article  ADS  Google Scholar 

  • Zoonens, M., Catoire, L.J., Giusti, F., Popot, J.-L. (2005) NMR study of a membrane protein in detergent-free aqueous solution. Proc. Natl. Acad. Sci. USA 102:8893–8898.

    Article  ADS  Google Scholar 

  • Zoonens, M., Giusti, F., Zito, F., Popot, J.-L. (2007) Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer. Implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392–10404.

    Article  Google Scholar 

  • Zoonens, M., Popot, J.-L. (2014) Amphipols for each season. J. Membr. Biol. 247:759–796.

    Article  Google Scholar 

  • Zoonens, M., Zito, F., Martinez, K.L., Popot, J.-L. (2014) Amphipols: a general introduction and some protocols, in: Mus-Veteau, I., ed., Membrane Proteins Production for Structural Analysis. Springer, New York, Heidelberg, Dordrecht, London, pp. 173–203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Popot, JL. (2018). Amphipols and Membrane Protein Crystallization. In: Membrane Proteins in Aqueous Solutions. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-73148-3_11

Download citation

Publish with us

Policies and ethics