Skip to main content

Membrane Proteins and Their Natural Environment

  • Chapter
  • First Online:
Membrane Proteins in Aqueous Solutions

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1568 Accesses

Summary

This chapter offers a compact introduction to membrane proteins and their natural environment. An overview is presented of the cellular location and functions of membrane proteins, of lipid bilayers and the physical-chemical constraints they impose on membrane-spanning molecules, of the impact of these constraints on the structure of protein transmembrane regions, of lipid/protein interactions, and of membrane protein synthesis. Background information that is indispensable as a frame for the rest of the book is recalled, but the accent is put on notions that are essential to understanding how surfactants work and to optimizing their use. The nature and extent of conformational changes undergone by protein transmembrane regions during functional cycles are illustrated, taking as examples three membrane proteins, bacteriorhodopsin, the nicotinic acetylcholine receptor, and the sarcoplasmic reticulum calcium pump, whose stability and functionality in the presence of various surfactants have been studied in some detail and will be discussed in subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The cytosol is usefully defined as “that portion of the cell which is found in the supernatant fraction after centrifuging an homogenate at 105,000 × g for 1 hour” (Clegg 1983), that is, essentially, a solution devoid of cytoskeleton, membrane fragments, DNA, etc. but comprising most water-soluble proteins.

References

  • Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., Walter, P. (2015) Molecular Biology of the Cell. Sixth Edition, Garland Publishing, Inc., New York & London.

    Google Scholar 

  • Allen, L.C. (1975) A model for the hydrogen bond. Proc. Natl. Acad. Sci. USA 72:4701–4705.

    Article  ADS  Google Scholar 

  • Althoff, T., Hibbs, R.E., Banerjee, S., Gouaux, E. (2014) X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors. Nature 512:333–337.

    Article  ADS  Google Scholar 

  • Althoff, T., Mills, D.J., Popot, J.-L., Kühlbrandt, W. (2011) Assembly of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J. 30:4652–4664.

    Article  Google Scholar 

  • Amzel, L.M. (1997) Loss of translational entropy in binding, folding, and catalysis. Proteins 28:144–149.

    Article  Google Scholar 

  • Andersen, O.S., Koeppe, R.E., 2nd. (2007) Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 36:107–130.

    Article  Google Scholar 

  • Andersson, M., Malmerberg, E., Westenhoff, S., Katona, G., Cammarata, M., Wöhri, A.B., Johansson, L.C., Ewald, F., Eklund, M., Wulff, M., Davidsson, J., Neutze, R. (2009) Structural dynamics of light-driven proton pumps. Structure 17:1265–1275.

    Article  Google Scholar 

  • Anishkin, A., Loukin, S.H., Teng, J., Kung, C. (2014) Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc. Natl. Acad. Sci. USA 111:7898–7905.

    Article  ADS  Google Scholar 

  • Arora, A., Abildgaard, F., Bushweller, J.H., Tamm, L.K. (2001) Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat. Struct. Biol. 8:334–338.

    Article  Google Scholar 

  • Auerbach, A. (2015) Agonist activation of a nicotinic acetylcholine receptor. Neuropharmacology 96:150–156.

    Article  Google Scholar 

  • Baenziger, J.E., Hénault, C.M., Therien, J.P.D., Sun, J. (2015) Nicotinic acetylcholine receptor-lipid interactions: Mechanistic insight and biological function. Biochim. Biophys. Acta 1848:1806–1817.

    Article  Google Scholar 

  • Baradaran, R., Berrisford, J.M., Minhas, G.S., Sazanov, L.A. (2013) Crystal structure of the entire respiratory complex I. Nature 494:443–448.

    Article  ADS  Google Scholar 

  • Barrantes, F.J. (2015) Phylogenetic conservation of protein-lipid motifs in pentameric ligand-gated ion channels. Biochim. Biophys. Acta 1848:1796–1805.

    Article  Google Scholar 

  • Battle, A.R., Ridone, P., Bavi, N., Nakayama, Y., Nikolaev, Y.A., Martinac, B. (2015) Lipid–protein interactions: Lessons learned from stress. Biochim. Biophys. Acta 1848:1744–1756.

    Article  Google Scholar 

  • Blobel, G. (1980) Intracellular protein topogenesis. Proc. Natl. Acad. Sci. USA 77:1496–1500.

    Article  ADS  Google Scholar 

  • Bocquet, N., Nury, H., Baaden, M., Le Poupon, C., Changeux, J.-P., Delarue, M., Corringer, P.-J. (2009) X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457:111–114.

    Article  ADS  Google Scholar 

  • Brejc, K., van Dijk, W.J., Klaassen, R.V., Schuurmans, M., van Der Oost, J., Smit, A.B., Sixma, T.K. (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411:269–276.

    Article  ADS  Google Scholar 

  • Brisson, A., Unwin, N. (1985) Quaternary structure of the acetylcholine receptor. Nature 315:474–477.

    Article  ADS  Google Scholar 

  • Brown, L.S., Ernst, O.P. (2017) Recent advances in biophysical studies of rhodopsins – Oligomerization, folding, and structure. Biochim. Biophys. Acta 1865:1512–1521.

    Article  Google Scholar 

  • Buchanan, S.K., Smith, B.S., Venkatramani, L., Xia, D., Esser, L., Palnitkar, M., Chakraborty, R., van der Helm, D., Deisenhofer, J. (1999) Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nature Struct. Biol. 6:56–63.

    Article  Google Scholar 

  • Buchanan, S.K., Yamashita, S., Fleming, K.G. (2012) Structure and folding of outer membrane proteins, in: Tamm, L.K., ed., Membranes. Elsevier, Oxford:Academic Press, pp. 139–163.

    Google Scholar 

  • Calimet, N., Simoes, M., Changeux, J.-P., Karplus, M., Talye, A., Cecchini, M. (2013) A gating mechanism of pentameric ligand-gated ion channels. Proc. Natl. Acad. Sci. USA 110:E3987–3996.

    Article  Google Scholar 

  • Carafoli, E. (2002) Calcium signaling: a tale for all seasons. Proc. Natl. Acad. Sci. USA 99:1115–1122.

    Article  ADS  Google Scholar 

  • Casiraghi, M., Damian, M., Lescop, E., Point, E., Moncoq, K., Morellet, N., Levy, D., Marie, J., Guittet, E., Banères, J.-L., Catoire, L.J. (2016) Functional modulation of a GPCR conformational landscape in a lipid bilayer. J. Am. Chem. Soc. 138:11170–11175

    Article  Google Scholar 

  • Cecchini, M., Changeux, J.-P. (2015) The nicotinic acetylcholine receptor and its prokaryotic homologues: Structure, conformational transitions & allosteric modulation. Neuropharmacology 96:137–149.

    Article  Google Scholar 

  • Cevc, G., Marsh, D. (1987) Phospholipid Bilayers: Physical Principles and Models. Wiley, New York, 442 p.

    Google Scholar 

  • Chang, G., Spencer, R.H., Lee, A.T., Barclay, M.T., Rees, D.C. (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282:2220–2226.

    Article  ADS  Google Scholar 

  • Changeux, J.-P. (2012) The nicotinic acetylcholine receptor: The founding father of the pentameric ligand-gated ion channel superfamily. J. Biol. Chem. 287:40207–40215.

    Article  Google Scholar 

  • Changeux, J.-P., Corringer, P.-J., Maskos, U. (2015) The nicotinic acetylcholine receptor: From molecular biology to cognition. Neuropharmacology 96:135–136.

    Article  Google Scholar 

  • Changeux, J.-P., Edelstein, S.J. (2005) Nicotinic Acetylcholine Receptors: From Molecular Biology to Cognition. Odile Jacob Publishing Corporation, New York, 284 p.

    Google Scholar 

  • Clark, K.M., Jenkins, J.L., Fedoriw, N., Dumont, M.E. (2017) Human CaaX protease ZMPSTE24 expressed in yeast: Structure and inhibition by HIV protease inhibitors. Protein Sci. 26:242–257.

    Article  Google Scholar 

  • Clegg, J.S. (1983) What is the cytosol? Trends Biochem. Sci. 8:436–437.

    Google Scholar 

  • Collinson, I., Corey, R.A., Allen, W.J. (2015) Channel crossing: how are proteins shipped across the bacterial plasma membrane? Philos. Trans. R. Soc. B 370:20150025.

    Article  Google Scholar 

  • Corringer, P.-J., Poitevin, F., Prévost, M.S., Sauguet, L., Delarue, M., Changeux, J.-P. (2012) Structure and pharmacology of pentameric receptor channels: from bacteria to brain. Structure 20:941–956.

    Article  Google Scholar 

  • Cowan, S.W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Pauptit, R.A., Jansonius, J.N., Rosenbusch, J.P. (1992) Crystal structures explain functional properties of two E. coli porins. Nature 358:727–733.

    Article  ADS  Google Scholar 

  • Cymer, F., von Heijne, G., White, S.H. (2015) Mechanisms of integral membrane protein insertion and folding. J. Mol. Biol. 427:999–1022.

    Article  Google Scholar 

  • daCosta, C.J.B., Baenziger, F.E. (2013) Gating of pentameric ligand-gated ion channels: Structural insights and ambiguities. Structure 21:1271–1283.

    Article  Google Scholar 

  • daCosta, C.J.B., Baenziger, J.E. (2009) A lipid-dependent uncoupled conformation of the acetylcholine receptor. J. Biol. Chem. 284:17819–17825.

    Article  Google Scholar 

  • Debnath, D., Nielsen, K.L., Otzen, D.E. (2010) In vitro association of fragments of a β-sheet membrane protein. Biophys. Chem. 148:112–120.

    Article  Google Scholar 

  • Deisenhofer, J., Epp, O., Miki, K., Huber, R., Michel, H. (1985) Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Å resolution. Nature 318:618–624.

    Article  ADS  Google Scholar 

  • Dilger, J.P., Fisher, L.R., Haydon, D.A. (1982) A critical comparison of electrical and optical methods for bilayer thickness determination. Chem. Phys. Lipids 30:159–176.

    Article  Google Scholar 

  • Doyle, D.A., Cabral, J.M., Pfuetzner, R.A., Kuo, A., Gulbis, J.M., Cohen, S.L., Chait, B.T., MacKinnon, R. (1998) The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280:69–77.

    Article  ADS  Google Scholar 

  • Dracheva, S., Bose, S., Hendler, R.W. (1996) Chemical and functional studies on the importance of purple membrane lipids in bacteriorhodopsin photocycle behavior. FEBS Lett. 382:209–212.

    Article  Google Scholar 

  • Drachmann, N.D., Olesen, C., Møller, J.V., Guo, Z., Nissen, P., Bublitz, M. (2014) Comparing crystal structures of Ca2+-ATPase in the presence of different lipids. FEBS J. 281:4249–4262.

    Article  Google Scholar 

  • Du, J., Lü, W., Wu, S., Cheng, Y., Gouaux, E. (2015) Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature 526:224–229.

    Article  ADS  Google Scholar 

  • Efremov, R.G., Baradaran, R., Sazanov, L.A. (2010) The architecture of respiratory complex I. Nature 465:441–445.

    Article  ADS  Google Scholar 

  • Engelman, D.M. (2005) Membranes are more mosaic than fluid. Nature 438:578–580.

    Article  ADS  Google Scholar 

  • Engelman, D.M., Chen, Y., Chin, C.-N., Curran, R., Dixon, A.M., Dupuy, A., Lee, A., Lehnert, U., Mathews, E., Reshetnyak, Y., Senes, A., Popot, J.-L. (2003) Membrane protein folding: beyond the two-stage model. FEBS Lett. 555:122–125.

    Article  Google Scholar 

  • Engelman, D.M., Steitz, T.A. (1981) The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell 23:411–422.

    Article  Google Scholar 

  • Fernández, C., Hilty, C., Wider, G., Wüthrich, K. (2002) Lipid-protein interactions in DHPC micelles containing the integral membrane protein OmpX investigated by NMR spectroscopy. Proc. Natl. Acad. Sci. USA 99:13533–13537.

    Article  ADS  Google Scholar 

  • Ferrand, M., Dianoux, A.J., Petry, W., Zaccai, G. (1993) Thermal motions and function of bacteriorhodopsin in purple membranes: effects of temperature and hydration studied by neutron scattering. Proc. Natl. Acad. Sci. USA 90:9668–9672.

    Article  ADS  Google Scholar 

  • Fyfe, P.K., McAuley, K.E., Roszak, A.W., Isaacs, N.W., Cogdell, R.J., Jones, M.R. (2001) Probing the interface between membrane proteins and membrane lipids by X-ray crystallography. Trends Biochem. Sci. 26:106–112.

    Article  Google Scholar 

  • Gonen, T., Cheng, Y., Sliz, P., Hiroaki, Y., Fujiyoshi, Y., Harrison, S.C., Walz, T. (2005) Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438:633–638.

    Article  ADS  Google Scholar 

  • Goodsell, D.S. (1991) Inside a living cell. Trends Biochem. Sci. 16:203–206.

    Article  Google Scholar 

  • Green, D.E., Allmann, D.W., Bachmann, E., Baum, H., Kopaczyk, K., Korman, E.F., Lipton, S., MacLennan, D.H., McConnell, D.G., Perdue, J.F., Rieske, J.S., Tzagoloff, A. (1967) Formation of membranes by repeating units. Arch. Biochem. Biophys. 119:312–335.

    Article  Google Scholar 

  • Grigorieff, N., Ceska, T.A., Downing, K.H., Baldwin, J.M., Henderson, R. (1996) Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259:393–421.

    Article  Google Scholar 

  • Hanson, M.A., Cherezov, V., Griffith, M.T., Roth, C.B., Jaakola, V.P., Chien, E.Y., Velasquez, J., Kuhn, P., Stevens, R.C. (2008) A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure 16:897–905.

    Article  Google Scholar 

  • Harrenga, A., Michel, H. (1999) The cytochrome c oxidase from Paracoccus denitrificans does not change the metal center ligation upon reduction. J. Biol. Chem. 274:33296–33299.

    Article  Google Scholar 

  • Hassaine, G., Deluz, C., Grasso, L., Wyss, R., Tol, M.B., Hovius, R., Graff, A., Stahlberg, H., Tomizaki, T., Desmyter, A., Moreau, C., Li, X.-D., Poitevin, F., Vogel, H., Nury, H. (2014) X-ray structure of the mouse serotonin 5-HT3 receptor. Nature 512:276–281.

    Article  ADS  Google Scholar 

  • Hénault, C.M., Sun, J., Therien, J.P.D., daCosta, C.J.B., Carswell, C.L., Labriola, J.M., Juranka, P.F., Baenziger, J.E. (2015) The role of the M4 lipid-sensor in the folding, trafficking, and allosteric modulation of nicotinic acetylcholine receptors. Neuropharmacology 96:157–168.

    Article  Google Scholar 

  • Henderson, R., Baldwin, J.M., Ceska, T.A., Zemlin, F., Beckmann, E., Downing, K.H. (1990) Model for the structure of bacteriorhodopsin based on high resolution electron cryo-microscopy. J. Mol. Biol. 213:899–929.

    Article  Google Scholar 

  • Henderson, R., Unwin, P.N.T. (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32.

    Article  ADS  Google Scholar 

  • Hendler, R.W., Dracheva, S. (2001) Importance of lipids for bacteriorhodopsin structure, photocycle, and function. Biochemistry 66:1311–1314.

    Google Scholar 

  • Hibbs, R.E., Gouaux, E. (2011) Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474:54–60.

    Article  Google Scholar 

  • Hilf, R.J., Dutzler, R. (2009) Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457:115–118.

    Article  ADS  Google Scholar 

  • Hilf, R.J.C., Dutzler, R. (2008) X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452:375–379.

    Article  ADS  Google Scholar 

  • Hiller, S., Garces, R.G., Malia, T.J., Orekhov, V.Y., Colombini, M., Wagner, G. (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321:1206–1210.

    Article  ADS  Google Scholar 

  • Hirai, T., Subramaniam, S., Lanyi, J.K. (2009) Structural snapshots of conformational changes in a seven-helix membrane protein: lessons from bacteriorhodopsin. Curr. Opin. Struct. Biol. 19:433–439.

    Article  Google Scholar 

  • Hite, R.K., Gonen, T., Harrison, S.C., Walz, T. (2008) Interactions of lipids with aquaporin-0 and other membrane proteins. Pflügers Arch. 456:651–661.

    Article  Google Scholar 

  • Honig, B.H., Hubbell, W.L. (1984) Stability of “salt bridges” in membrane proteins. Proc. Natl. Acad. Sci. USA 81:5412–5416.

    Article  ADS  Google Scholar 

  • Hunte, C. (2005) Specific protein-lipid interactions in membrane proteins. Biochem. Soc. Trans. 33:938–942.

    Article  Google Scholar 

  • Hunte, C., Richers, S. (2008) Lipids and membrane protein structures. Curr. Opin. Struct. Biol. 18:406–411.

    Article  Google Scholar 

  • Israelachvili, J.N. (2011) Intermolecular and Surface Forces. 3rd ed., Elsevier/Academic Press, London, 706 p.

    Google Scholar 

  • Iwata, S., Ostermeier, C., Ludwig, B., Michel, H. (1995) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669.

    Article  ADS  Google Scholar 

  • Jakobsson, E. (1997) Computer simulation studies of biological membranes: progress, promise and pitfalls. Trends Biochem. Sci. 22:339–344.

    Article  Google Scholar 

  • Jensen, A.M.L., Sørensen, T.L.M., Olesen, C., Møller, J.V., Nissen, P. (2006) Modulatory and catalytic modes of ATP binding by the calcium pump. EMBO J. 25:2305–2315.

    Article  Google Scholar 

  • Jordan, P., Fromme, P., Witt, H.T., Klukas, O., Saenger, W., Krauss, N. (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917.

    Article  ADS  Google Scholar 

  • Joshi, M., Dracheva, S., Mukhopadhyay, A.K., Bose, S., Hendler, R.W. (1998) Importance of specific native lipids in controlling the photocycle of bacteriorhodopsin. Biochemistry 37:14463–14470.

    Article  Google Scholar 

  • Kandori, H. (2015) Ion-pumping microbial rhodopsins. Front. Mol. Biosci. 2:52.

    Article  Google Scholar 

  • Karlin, A. (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat. Rev. Neurosci. 3:102–114.

    Article  Google Scholar 

  • Kleinschmidt, J.H. (2015) Folding of β-barrel membrane proteins in lipid bilayers – Unassisted and assisted folding and insertion. Biochim. Biophys. Acta 1848:1927–1943.

    Article  Google Scholar 

  • Koebnik, R. (1996) In vivo membrane assembly of split variants of the E. coli outer membrane protein OmpA. EMBO J. 15:3529–3537.

    Google Scholar 

  • Krauss, N., Schubert, W.-D., Klukas, O., Fromme, P., Witt, H.T., Saenger, W. (1996) Photosystem I at 4 Å resolution represents the first structural model of a joint photosynthetic reaction center and core antenna system. Nature Struct. Biol. 3:965–973.

    Article  Google Scholar 

  • Kühlbrandt, W. (2000) Bacteriorhodopsin – the movie. Nature 406:569–570.

    Article  Google Scholar 

  • Kühlbrandt, W. (2015) Structure and function of mitochondrial membrane protein complexes. BMC Biol. 13:89.

    Article  Google Scholar 

  • Kühlbrandt, W., Wang, D.N., Fujiyoshi, Y. (1994) Atomic model of plant light-harvesting complex. Nature 367:614–621.

    Article  ADS  Google Scholar 

  • Kurisu, G., Zhang, H., Smith, J.L., Cramer, W.A. (2003) Structure of the cytochrome b6 f complex of oxygenic photosynthesis: tuning the cavity. Science 302:1009–1014.

    Article  ADS  Google Scholar 

  • Landau, E.M., Rosenbusch, J.P. (1996) Lipid cubic phases: A novel concept for the crystallization of membrane proteins. Proc. Natl. Acad. Sci. USA 93:14532–14535.

    Article  ADS  Google Scholar 

  • Lange, C., Nett, J.H., Trumpower, B.L., Hunte, C. (2001) Specific roles of protein-phospholipid interactions in the yeast cytochrome bc1 complex structure. EMBO J. 20:6591–6600.

    Article  Google Scholar 

  • Lanyi, J.K. (2004) Bacteriorhodopsin. Annu. Rev. Physiol. 66:665–688.

    Article  Google Scholar 

  • Lanyi, J.K., Luecke, H. (2001) Bacteriorhodopsin. Curr. Opin. Struct. Biol. 11:415–419.

    Article  Google Scholar 

  • Lavergne, J., Bouchaud, J.-P., Joliot, P. (1992) Plastoquinone compartmentation in chloroplasts. II. Theoretical aspects. Biochim. Biophys. Acta 1101:13–22.

    Article  Google Scholar 

  • Lee, A.G. (2003) Lipid-protein interactions in biological membranes: a structural perspective. Biochim. Biophys. Acta 1612:1–40.

    Article  Google Scholar 

  • Lee, A.G. (2004) How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta 1666:62–87.

    Article  Google Scholar 

  • Lee, A.G. (2011a) Biological membranes: the importance of molecular detail. Trends Biochem. Sci. 36:493–500.

    Article  Google Scholar 

  • Lee, A.G. (2011b) How to understand lipid-protein interactions in biological membranes, in: Yeagle, P., ed., Structure of Biological Membranes. 3rd edition, Taylor and Francis, Boca Raton, Florida, USA, pp. 273–313.

    Google Scholar 

  • Lee, T.-Y., Yeh, V., Chuang, J., Chan, J.C.C., Chu, L.-K., Yu, T.-Y. (2015) Tuning the photocycle kinetics of bacteriorhodopsin in lipid nanodiscs. Biophys. J. 109:1899–1906.

    Article  ADS  Google Scholar 

  • Lehnert, U., Réat, V., Weik, M., Zaccai, G., Pfister, C. (1998) Thermal motions in bacteriorhodopsin at different hydration levels studied by neutron scattering: correlation with kinetics and light-induced conformational changes. Biophys. J. 75:1945–1952.

    Article  Google Scholar 

  • Li, E., You, M., Hristova, K. (2006) FGFR3 dimer stabilization due to a single amino acid pathogenic mutation. J. Mol. Biol. 356:600–612.

    Article  Google Scholar 

  • Locher, K.P., Rees, B., Koebnik, R., Mitschler, A., Moulinier, L., Rosenbusch, J.P., Moras, D. (1998) Transmembrane signaling across the ligand-gated FhuA receptor: Crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell 95:771–778.

    Article  Google Scholar 

  • Lundbaek, J.A., Koeppe, R.E., 2nd., Andersen, O.S. (2010) Amphiphile regulation of ion channel function by changes in the bilayer spring constant. Proc. Natl. Acad. Sci. USA 107:1527–1530.

    Article  Google Scholar 

  • MacKenzie, K.R., Prestegard, J.H., Engelman, D.M. (1997) A transmembrane helix dimer: structure and implications. Science 276:131–133.

    Article  Google Scholar 

  • Marčelja, S. (1974) Chain ordering in liquid crystals. II. Structure of bilayer membranes. Biochim. Biophys. Acta 367:165–176.

    Article  Google Scholar 

  • Marsh, D. (1996) Lateral pressure in membranes. Biochim. Biophys. Acta 1286:183–223.

    Article  Google Scholar 

  • Marsh, D. (2008) Protein modulation of lipids, and vice-versa, in membranes. Biochim. Biophys. Acta 1778:1545–1575.

    Article  Google Scholar 

  • Martfeld, A.N., Rajagopalan, V., Greathouse, D.V., Koeppe, R.E., II (2015) Dynamic regulation of lipid-protein interactions. Biochim. Biophys. Acta 1848:1849–1859.

    Article  Google Scholar 

  • McMorran, L.M., Brockwell, D.J., Radford, S.E. (2014) Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: What have we learned to date? Arch. Biochem. Biophys. 564:265–280.

    Article  Google Scholar 

  • Merino, J.M., Møller, J.V., Gutiérrez-Merino, C. (1994) Thermal unfolding of monomeric Ca2+,Mg2+-ATPase from sarcoplasmic reticulum of rabbit skeletal muscle. FEBS Lett. 343:155–159.

    Article  Google Scholar 

  • Miller, P.S., Aricescu, A.R. (2014) Crystal structure of a human GABAA receptor. Nature 512:270–275.

    Article  ADS  Google Scholar 

  • Mitsuoka, K., Hirai, T., Miyazawa, A., Kidera, A., Kimura, Y., Fujiyoshi, Y. (1999) The structure of bacteriorhodopsin at 3.0 Å resolution based on electron crystallography: implication of the charge distribution. J. Mol. Biol. 286:861–882.

    Article  Google Scholar 

  • Møller, J.V., Lind, K.E., Andersen, J.P. (1980) Enzyme kinetics and substrate stabilization of detergent-solubilized and membraneous (Ca2+ + Mg2+)-activated ATPase from sarcoplasmic reticulum. Effect of protein-protein interactions. J. Biol. Chem. 255:1912–1920.

    Google Scholar 

  • Møller, J.V., Olesen, C., Winther, A.M.L., Nissen, P. (2010) The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump. Q. Rev. Biophys. 43:501–566.

    Article  Google Scholar 

  • Morales-Perez, C.L., Noviello, C.M., Hibbs, R.E. (2016) X-ray structure of the human α4β2 nicotinic receptor. Nature 538:411–415.

    Article  ADS  Google Scholar 

  • Nemecz, Á., Prévost, M.S., Menny, A., Corringer, P.-J. (2016) Emerging molecular mechanisms of signal transduction in pentameric ligand-gated ion channels. Neuron 90:452–470.

    Article  Google Scholar 

  • Neutze, R., Pebay-Peyroula, E., Edman, K., Royant, A., Navarro, J., Landau, E.M. (2002) Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochim. Biophys. Acta 1565:144–167.

    Article  Google Scholar 

  • Nicolson, G.L. (2014) The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim. Biophys. Acta 1838:1451–1466.

    Article  Google Scholar 

  • Nogi, T., Fathir, I., Kobayashi, M., Nozawa, T., Miki, K. (2000) Crystal structures of photosynthetic reaction center and high-potential iron-sulfur protein from Thermochromatium tepidum: thermostability and electron transfer. Proc. Natl. Acad. Sci. USA 97:13561–13566.

    Article  ADS  Google Scholar 

  • Norimatsu, Y., Hasegawa, K., Shimizu, N., Toyoshima, C. (2017) Protein-phospholipid interplay revealed with crystals of a calcium pump. Nature 545:193–198.

    Article  ADS  Google Scholar 

  • Nury, H., Van Renterghem, C., Weng, Y., Tran, A., Baaden, M., Dufresne, V., Changeux, J.-P., Sonner, J.M., Delarue, M., Corringer, P.-J. (2011) X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature 469:428–431.

    Article  ADS  Google Scholar 

  • Nys, M., Kesters, D., Ulens, C. (2013) Structural insights into Cys-loop receptor function and ligand recognition. Biochim. Biophys. Acta 86:1042–1053.

    Google Scholar 

  • Obara, K., Miyashita, N., Xu, C., Toyoshima, I., Sugita, Y., Inesi, G., Toyoshima, C. (2005) Structural role of countertransport revealed in Ca2+ pump crystal structure in the absence of Ca2+. Proc. Natl. Acad. Sci. USA 102:14489–14496.

    Article  ADS  Google Scholar 

  • Opekarová, M., Tanner, W. (2003) Specific lipid requirements of membrane proteins – a putative bottleneck in heterologous expression. Biochim. Biophys. Acta 1610:11–22.

    Article  Google Scholar 

  • Ostermeier, C., Harrenga, A., Ermler, U., Michel, H. (1997) Structure at 2.7 Å resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody Fv fragment. Proc. Natl. Acad. Sci. USA 94:10547–10553.

    Article  ADS  Google Scholar 

  • Otzen, D.E., Andersen, K.K. (2013) Folding of outer membrane proteins. Arch. Biochem. Biophys. 531:34–43.

    Article  Google Scholar 

  • Palsdottir, H., Hunte, C. (2004) Lipids in membrane protein structures. Biochim. Biophys. Acta 1666:2–18.

    Article  Google Scholar 

  • Pankratov, Y., Lalo, U. (2014) Calcium permeability of ligand-gated Ca2+ channels. Eur. J. Pharmacol. 739:60–73.

    Article  Google Scholar 

  • Park, E., Rapoport, T.A. (2012) Mechanisms of Sec61/SecY-mediated protein translocation across membranes. Annu. Rev. Biophys. 41:21–40.

    Article  Google Scholar 

  • Pebay-Peyroula, E., Rummel, G., Rosenbusch, J.P., Landau, E. (1997) X-ray structure of bacteriorhodopsin at 2.5 Å from microcrystals grown in lipidic cubic phases. Science 277:1676–1881.

    Article  Google Scholar 

  • Pedersen, P.L. (2007) Transport ATPases into the year 2008: a brief overview related to types, structures, functions and roles in health and disease. J. Bioenerg. Biomem. 39:349–355.

    Article  Google Scholar 

  • Peters, R. (1986) Fluorescence microphotolysis to measure nucleocytoplasmic transport and intracellular mobility. Biochim. Biophys. Acta 864:305–359.

    Article  Google Scholar 

  • Phillips, R., Ursell, T., Wiggins, P., Sens, P. (2009) Emerging roles for lipids in shaping membrane protein function. Nature 459:379–385.

    Article  ADS  Google Scholar 

  • Planas-Iglesias, J., Dwarakanath, H., Mohammadyani, D., Yanamala, N., Kagan, V.E., Klein-Seetharaman, J. (2015) Cardiolipin interactions with proteins. Biophys. J. 109:1282–1294.

    Article  ADS  Google Scholar 

  • Pocanschi, C., Popot, J.-L., Kleinschmidt, J.H. (2013) Folding and stability of outer membrane protein A (OmpA) from Escherichia coli in an amphipathic polymer, amphipol A8-35. Eur. Biophys. J. 42:103–118.

    Article  Google Scholar 

  • Popot, J.-L. (2014) Folding membrane proteins in vitro: A table and some comments. Arch. Biochem. Biophys. 564:314–326.

    Article  ADS  Google Scholar 

  • Popot, J.-L., de Vitry, C. (1990) On the microassembly of integral membrane proteins. Annu. Rev. Biophys. Biophys. Chem. 19:369–403.

    Article  Google Scholar 

  • Popot, J.-L., Engelman, D.M. (1990) Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29:4031–4037.

    Article  Google Scholar 

  • Popot, J.-L., Engelman, D.M. (2000) Helical membrane protein folding, stability and evolution. Annu. Rev. Biochem. 69:881–923.

    Article  Google Scholar 

  • Popot, J.-L., Engelman, D.M. (2016) Membranes do not tell proteins how to fold. Biochemistry 55:5–18.

    Article  Google Scholar 

  • Prévost, M.S., Sauguet, L., Nury, H., Van Renterghem, C., Huon, C., Poitevin, F., Baaden, M., Delarue, M., Corringer, P.-J. (2012) A locally closed conformation of a bacterial pentameric proton-gated ion channel. Nat. Struct. Molec. Biol. 19:642–649.

    Article  Google Scholar 

  • Prince, S.M., Papiz, M.Z., Freer, A.A., McDermott, G., Hawthornwaite-Lawless, A.M., Cogdell, R.J., Isaacs, N.W. (1997) Apoprotein structure in the LH2 complex from Rhodopseudomonas acidophila strain 10050 : modular assembly and protein-pigment interactions. J. Mol. Biol. 268:412–423.

    Article  Google Scholar 

  • Pryor, E.E., Jr., Horanyi, P.S., Clark, K.M., Fedoriw, N., Connelly, S.M., Koszelak-Rosenblum, M., Zhu, G., Malkowski, M.G., Wiener, M.C., Dumont, M.E. (2013) Structure of the integral membrane protein CAAX protease Ste24p. Science 339:1600–1604.

    Article  ADS  Google Scholar 

  • Qin, L., Hiser, C., Mulichak, A., Garavito, R.M., Ferguson-Miller, S. (2006) Identification of conserved lipid/detergent-binding sites in a high-resolution structure of the membrane protein cytochrome c oxidase. Proc. Natl. Acad. Sci. USA 103:16117–16122.

    Article  ADS  Google Scholar 

  • Qin, L., Sharpe, M.A., Garavito, R.M., Ferguson-Miller, S. (2007) Conserved lipid-binding sites in membrane proteins: a focus on cytochrome c oxidase. Curr. Opin. Struct. Biol. 17:444–450.

    Article  Google Scholar 

  • Qin, X., Suga, M., Kuang, T., Shen, J.R. (2015) Photosynthesis. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348:989–995.

    Article  ADS  Google Scholar 

  • Reynolds, J.A., Gilbert, D.B., Tanford, C. (1974) Empirical correlation between hydrophobic free energy and aqueous cavity surface area. Proc. Natl. Acad. Sci. USA 71:2925–2927.

    Article  ADS  Google Scholar 

  • Rouse, S.L., Sansom, M.S.P. (2015) Interactions of lipids and detergents with a viral ion channel protein: Molecular dynamics simulation studies. J. Phys. Chem. B 119:764–772.

    Article  Google Scholar 

  • Rummel, G., Hardmeyer, A., Widmer, C., Chiu, M.L., Nollert, P., Locher, K.P., Pedruzzi, I.I., Landau, E.M., Rosenbusch, J.P. (1998) Lipidic cubic phases: new matrices for the three-dimensional crystallization of membrane proteins. J. Struct. Biol. 121:82–91.

    Article  Google Scholar 

  • Sauguet, L., Poitevin, F., Murail, S., Van Renterghem, C., Moraga-Cid, G., Malherbe, L., Thompson, A.W., Koehl, P., Corringer, P.-J., Baaden, M., Delarue, M. (2013) Structural basis for ion permeation mechanism in pentameric ligand-gated ion channels. EMBO J. 32:728–741.

    Article  Google Scholar 

  • Sauguet, L., Shahsavar, A., Poitevin, F., Huon, C., Menny, A., Nemecz, À., Haouz, A., Changeux, J.-P., Corringer, P.-J., Delarue, M. (2014) Crystal structures of a pentameric ligand-gated ion channel provide a mechanism for activation. Proc. Natl. Acad. Sci. USA 111:966–971.

    Article  ADS  Google Scholar 

  • Saxton, M.J. (1989) Lateral diffusion in an archipelago. Distance dependence of the diffusion coefficient. Biophys. J. 56:615–622.

    Article  ADS  Google Scholar 

  • Schirmer, T. (1998) General and specific porins from bacterial outer membranes. J. Struct. Biol. 121:101–109.

    Article  Google Scholar 

  • Shinzawa-Itoh, K., Aoyama, H., Muramoto, K., Terada, H., Kurauchi, T., Tadehara, Y., Yamasaki, A., Sugimura, T., Kurono, S., Tsujimoto, K., Mizushima, T., Yamashita, E., Tsukihara, T., Yoshikawa, S. (2007) Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase. EMBO J. 26:1713–1725.

    Article  Google Scholar 

  • Sine, S.M. (2012) End-plate acetylcholine receptor: Structure, mechanism, pharmacology, and disease. Physiol. Rev. 92:1189–1234.

    Article  Google Scholar 

  • Singer, S.J., Nicolson, G.L. (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731.

    Article  ADS  Google Scholar 

  • Smit, A.B., Syed, N.I., Schaap, D., van Minnen, J., Klumpermank, J., Kits, K.S., Lodder, H., van der Schors, R.C., van Elk, R., Sorgedrager, B., Brejc, K., Sixma, T.K., Geraerts, W.P.M. (2001) A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature 411:261–268.

    Article  ADS  Google Scholar 

  • Smith, A.W. (2012) Lipid-protein interactions in biological membranes: A dynamic perspective. Biochim. Biophys. Acta 1818:172–177.

    Article  Google Scholar 

  • Song, L., Hobaugh, M.R., Shustak, C., Cheley, S., Bayley, H., Gouaux, J.E. (1996) Structure of α-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866.

    Article  ADS  Google Scholar 

  • Sonntag, Y., Musgaard, M., Olesen, C., Schiøtt, B., Møller, J.V., Nissen, P., Thøgersen, L. (2011) Mutual adaptation of a membrane protein and its lipid bilayer during conformational changes. Nat. Commun. 2:304.

    Article  ADS  Google Scholar 

  • Spurny, R., Ramerstorfer, J., Price, K., Brams, M., Ernst, M., Nury, H., Verheije, M., Legrand, P., Bertrand, D., Bertrand, S., Dougherty, D.A., de Esch, I.J.P., Corringer, P.-J., Sieghart, W., Lummis, S.C.R., Ulens, C. (2012) Pentameric ligand-gated ion channel ELIC is activated by GABA and modulated by benzodiazepines. Proc. Natl. Acad. Sci. USA 109:E3028-E3034.

    Article  Google Scholar 

  • Starling, A.P., Dalton, K.A., East, J.M., Oliver, S., Lee, A.G. (1996) Effects of phosphatidylethanolamines on the activity of the Ca2+-ATPase of sarcoplasmic reticulum. Biochem. J. 320:309–314.

    Article  Google Scholar 

  • Stowell, M.H.B., McPhillips, T.M., Rees, D.C., Soltis, S.M., Abresch, E., Feher, G. (1997) Light-induced structural changes in photosynthetic reaction center: implication for mechanism of electron-proton transfer. Science 276:812–816.

    Article  Google Scholar 

  • Stroebel, D., Choquet, Y., Popot, J.-L., Picot, D. (2003) An atypical haem in the cytochrome b6 f complex. Nature 426:413–418.

    Article  ADS  Google Scholar 

  • Svensson-Ek, M., Abramson, J., Larsson, G., Tornroth, S., Brzezinski, P., Iwata, S. (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J. Mol. Biol. 321:329–339.

    Article  Google Scholar 

  • Sweadner, K.J. (2017) An ion-transport enzyme that rocks. Nature 545:162–164.

    Article  ADS  Google Scholar 

  • Taly, A., Hénin, J., Changeux, J.-P., Cecchini, M. (2014) Allosteric regulation of pentameric ligand-gated ion channels: an emerging mechanistic perspective. Channels 8:350–360.

    Article  Google Scholar 

  • Tanford, C. (1980) The Hydrophobic Effect: Formation of Micelles and Biological Membranes. 2nd ed. John Wiley & Sons, New York, 233 p.

    Google Scholar 

  • Teng, J., Loukin, S.H., Anishkin, A., Kung, C. (2015) The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements. Pflügers Arch. 467:27–37.

    Article  Google Scholar 

  • Toyoshima, C., Nakasako, M., Nomura, H., Ogawa, H. (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–655.

    Article  ADS  Google Scholar 

  • Toyoshima, C., Nomura, H. (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418:605–611.

    Article  ADS  Google Scholar 

  • Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., Yoshikawa, S. (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272:1136–1144.

    Article  ADS  Google Scholar 

  • Ujwal, R., Cascio, D., Colletier, J.-P., Faham, S., Zhang, J., Toro, L., Ping, P., Abramson, J. (2008) The crystal structure of mouse VDAC1 at 2.3 Å resolution reveals mechanistic insights into metabolite gating. Proc. Natl. Acad. Sci. USA 105:17742–17747.

    Article  ADS  Google Scholar 

  • Unwin, N. (2005) Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J. Mol. Biol. 346:967–989.

    Article  Google Scholar 

  • Unwin, N. (2013) Nicotinic acetylcholine receptor and the structural basis of neuromuscular transmission: insights from Torpedo postsynaptic membranes. Quart. Rev. Biophys. 46:283–322.

    Article  Google Scholar 

  • Unwin, N., Fujiyoshi, Y. (2012) Gating movement of acetylcholine receptor caught by plunge-freezing. J. Mol. Biol. 422:616–634.

    Article  Google Scholar 

  • Valiyaveetil, F.I., Zhou, Y., MacKinnon, R. (2002) Lipids in the structure, folding, and function of the KcsA K+ channel. Biochemistry 41:10771–10777.

    Article  Google Scholar 

  • Vinothkumar, K.R. (2011) Structure of rhomboid protease in a lipid environment. J. Mol. Biol. 407:232–247.

    Article  Google Scholar 

  • Vinothkumar, K.R., Henderson, R. (2010) Structures of membrane proteins. Q. Rev. Biophys. 43:65–158.

    Article  Google Scholar 

  • Vinothkumar, K.R., Zhu, J., Hirst, J. (2014) Architecture of mammalian respiratory complex I. Nature 515:80–84.

    Article  ADS  Google Scholar 

  • von Heijne, G. (1986) The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J. 5:3021–3027.

    Google Scholar 

  • Wallin, E., von Heijne, G. (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archean, and eukaryotic organisms. Protein Sci. 7:1029–1038.

    Article  Google Scholar 

  • Weiss, M.S., Abele, U., Weckesser, J., Welte, W., Schiltz, E., Schulz, G.E. (1991a) Molecular architecture and electrostatic properties of a bacterial porin. Science 254:1627–1630.

    Article  ADS  Google Scholar 

  • Weiss, M.S., Kreusch, A., Schiltz, E., Nestel, U., Welte, W., Weckesser, J., Schulz, G.E. (1991b) The structure of porin from Rhodobacter capsulatus at 1.8 Å resolution. FEBS Lett. 280:379–382.

    Article  Google Scholar 

  • Weiss, M.S., Wacker, T., Nestel, U., Woitzik, D., Weckesser, J., Kreutz, W., Welte, W., Schulz, G.E. (1989) The structure of porin from Rhodobacter capsulatus at 0.6 nm resolution. FEBS Lett. 256:143–146.

    Article  Google Scholar 

  • Wenz, T., Hielscher, R., Hellwig, P., Schägger, H., Richers, S., Hunte, C. (2009) Role of phospholipids in respiratory cytochrome bc1 complex catalysis and supercomplex formation. Biochim. Biophys. Acta 1787:609–616.

    Article  Google Scholar 

  • White, S.H., von Heijne, G., Engelman, D.M. (2018) Cell Boundaries: How Membranes and Their Proteins Work. Garland, New York, in preparation.

    Google Scholar 

  • White, S.H., Wimley, W.C. (1999) Membrane protein folding and stability : physical principles. Annu. Rev. Biophys. Biomol. Struct. 28:319–365.

    Article  Google Scholar 

  • Wickstrand, C., Dods, R., Royant, A., Neutze, R. (2015) Bacteriorhodopsin: Would the real structural intermediates please stand up? Biochim. Biophys. Acta 1850:536–553.

    Article  Google Scholar 

  • Xia, D., Yu, C.-A., Kim, H., Xia, J.-Z., Kachurin, A.M., Zhang, L., Yu, L., Deisenhofer, J. (1997) Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277:60–66.

    Article  Google Scholar 

  • Zaccai, G. (2000) Moist and soft, dry and stiff: a review of neutron experiments on hydration-dynamics-activity relations in the purple membrane of Halobacterium salinarum. Biophys. Chem. 86:249–257.

    Article  Google Scholar 

  • Zaccai, G. (2004) The effect of water on protein dynamics. Phil. Trans. R. Soc. Lond. B 359:1269–1275.

    Article  Google Scholar 

  • Zhou, Y., Morais-Cabral, J.H., Kaufman, A., MacKinnon, R. (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414:43–48.

    Article  ADS  Google Scholar 

  • Zorman, S., Botte, M., Jiang, Q., Collinson, I., Schaffitzel, C. (2015) Advances and challenges of membrane-protein complex production. Curr. Opin. Struct. Biol. 32:123–130.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Popot, JL. (2018). Membrane Proteins and Their Natural Environment. In: Membrane Proteins in Aqueous Solutions. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-73148-3_1

Download citation

Publish with us

Policies and ethics