Skip to main content

Interspecific Avian Brood Parasitism as a Model System for Exploring Ecological and Evolutionary Questions Related to Habitat Selection

  • Chapter
  • First Online:
Avian Brood Parasitism

Part of the book series: Fascinating Life Sciences ((FLS))

  • 1323 Accesses

Abstract

Characteristics of avian brood parasitism make it an appropriate system to explore general ecological and evolutionary questions. This is mainly because the selection pressures due to environmental conditions that are working on hosts and on brood parasites are asymmetric, and the fact that hosts and brood parasites develop in similar environmental conditions, which allows for testing exclusive predictions associated with ecological and evolutionary hypotheses. I here concentrate on the appropriateness of brood parasitism for exploring questions directly or indirectly related to habitat selection and dispersal. I introduce the importance of social information and risk of parasitism on habitat selection by hosts and parasites, which, among others, would influence the geographic distribution and abundance of counterparts. I also introduce the ecological implications of evolutionary outcomes of the interactions between parasites and their hosts, which will partially determine the coevolutionary dynamics between parasite and hosts. Furthermore, to exemplify the advantages of using brood parasitism to explore these questions, I discuss some published papers that address each treated subject, mainly those from the research group I have been working with.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonov A, Stokke BG, Moksnes A, Røskaft E (2007) Factors influencing the risk of common cuckoo Cuculus canorus parasitism on marsh warblers Acrocephalus palustris. J Avian Biol 38:390–393

    Article  Google Scholar 

  • Arcese P, Smith JNM, Hatch MI (1996) Nest predation by cowbirds and its consequences for passerine demography. Proc Natl Acad Sci U S A 93:4608–4611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avilés JM, Stokke BG, Parejo D (2006) Relationship between nest predation suffered by hosts and brown-headed cowbird parasitism: a comparative study. Evol Ecol 20:97–111

    Article  Google Scholar 

  • Avilés JM, Moskat C, Ban M, Hargitai R, Parejo D (2009) Common cuckoos (Cuculus canorus) do not rely on indicators of parental abilities when searching for host nests: the importance of host defenses. Auk 126:431–438. https://doi.org/10.1525/auk.2009.08162

    Article  Google Scholar 

  • Begon M, Townsend CR, Harper JL (2006) Ecology. From individuals to ecosystems, 4th edn. Blackwell, Oxford

    Google Scholar 

  • Begum S, Moksnes A, Røskaft E, Stokke BG (2011) Factors influencing host nest use by the brood parasitic Asian Koel (Eudynamys scolopacea). J Ornithol 152:793–800

    Article  Google Scholar 

  • Boulinier T, Lemel JY (1996) Spatial and temporal variations of factors affecting breeding habitat quality in colonial birds: some consequences for dispersal and habitat selection. Acta Oecol 17:531–552

    Google Scholar 

  • Boulinier T, McCoy KD, Sorci G (2001) Dispersal and parasitism. In: Clobert J, Nichols JA, Dhoudt A, Danchin E (eds) Dispersal. Oxford University Press, Oxford, pp 169–179

    Google Scholar 

  • Brown M, Lawes MJ (2007) Colony size and nest density predict the likelihood of parasitism in the colonial Southern Red Bishop Euplectes orix – Diderick Cuckoo Chrysococcyx caprius system. Ibis 149:321–327

    Article  Google Scholar 

  • Burhans DE, Thompson FR (1998) Effects of time and nest-site characteristics on concealment of songbird nests. Condor 100:663–672. https://doi.org/10.2307/1369747

    Article  Google Scholar 

  • Burley N (1986) Sexual selection for aesthetic traits in species with biparental care. Am Nat 127:415–445

    Article  Google Scholar 

  • Burley N (1988) The differential-allocation hypothesis: an experimental test. Am Nat 132:611–628

    Article  Google Scholar 

  • Caro SM, West SA, Griffin AS (2016) Sibling conflict and dishonest signaling in birds. Proc Natl Acad Sci U S A 113:13803–13808. https://doi.org/10.1073/pnas.1606378113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clobert J, Danchin E, Dhondt AA, Nichols JD (2001) Dispersal. Oxford University Press, Oxford

    Google Scholar 

  • Danchin E, Boulinier T, Massot M (1998) Conspecific reproductive success and breeding habitat selection: implications for the study of coloniality. Ecology 79:2415–2428. https://doi.org/10.1890/0012-9658(1998)079[2415:crsabh]2.0.co;2

    Article  Google Scholar 

  • Danchin E, Giraldeau LA, Valone TJ, Wagner RH (2004) Public information: from nosy neighbors to cultural evolution. Science 305:487–491

    Article  CAS  PubMed  Google Scholar 

  • Davies NB (2000) Cuckoos, cowbirds, and others cheats. T & A D Poyser, London

    Google Scholar 

  • Dawkins D, Krebs JR (1979) Arms races between and within species. Proc R Soc Lond B Biol Sci 205:489–511

    Article  CAS  PubMed  Google Scholar 

  • De Neve L, Soler JJ, Soler M, Pérez-Contreras T (2004) Nest size predicts the effect of food supplementation to magpie nestlings on their immunocompetence: an experimental test of nest size indicating parental ability. Behav Ecol 15:1031–1036

    Article  Google Scholar 

  • Doligez B, Cadet C, Danchin E, Boulinier T (2003) When to use public information for breeding habitat selection? The role of environmental predictability and density dependence. Anim Behav 66:973–988. https://doi.org/10.1006/anbe.2002.2270

    Article  Google Scholar 

  • Endler JA (1986) Natural selection in the wild. Monographs in population biology. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Feeney WE, Welbergen JA, Langmore NE (2014) Advances in the study of coevolution between avian brood parasites and their hosts. Annu Rev Ecol Evol Syst 45:227–246. https://doi.org/10.1146/annurev-ecolsys-120213-091603

    Article  Google Scholar 

  • Fiorini VD, Tuero DT, Reboreda JC (2009) Host behaviour and nest-site characteristics affect the likelihood of brood parasitism by shiny cowbirds on chalk-browed mockingbirds. Behaviour 146:1387–1403. https://doi.org/10.1163/156853909x433338

    Article  Google Scholar 

  • Garamszegi LZ, Avilés JM (2005) Brood parasitism by brown-headed cowbirds and the expression of sexual characters in their hosts. Oecologia 143:167–177

    Article  PubMed  Google Scholar 

  • Hochberg ME, Van Baalen M (1998) Antagonistic coevolution over productivity gradients. Am Nat 152:620–634

    Article  CAS  PubMed  Google Scholar 

  • Holt RD (1985) Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution. Theor Popul Biol 28:181–208. https://doi.org/10.1016/0040-5809(85)90027-9

    Article  Google Scholar 

  • Hoover JP (2003) Multiple effects of brood parasitism reduce the reproductive success of prothonotary warblers, Protonotaria citrea. Anim Behav 65:923–934. https://doi.org/10.1006/anbe.2003.2155

    Article  Google Scholar 

  • Hoover JP, Hauber ME (2007) Individual patterns of habitat and nest-site use by hosts promote transgenerational transmission of avian brood parasitism status. J Anim Ecol 76:1208–1214

    Article  PubMed  Google Scholar 

  • Hoover JP, Reetz MJ (2006) Brood parasitism increases provisioning rate, and reduces offspring recruitment and adult return rates, in a cowbird host. Oecologia 149:165–173. https://doi.org/10.1007/s00442-006-0424-1

    Article  PubMed  Google Scholar 

  • Hoover JP, Robinson SK (2007) Retaliatory mafia behavior by a parasitic cowbird favors host acceptance of parasitic eggs. Proc Natl Acad Sci U S A 104:4479–4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenike J (1990) Host specialization in phytophagous insects. Annu Rev Ecol Evol Syst 21:243–273

    Article  Google Scholar 

  • Jelinek V, Pozgayova M, Honza M, Prochazka P (2016) Nest as an extended phenotype signal of female quality in the great reed warbler. J Avian Biol 47:428–437. https://doi.org/10.1111/jav.00700

    Article  Google Scholar 

  • Johnson MD (2007) Measuring habitat quality: a review. Condor 109:489–504. https://doi.org/10.1650/8347.1

    Article  Google Scholar 

  • Kolecek J, Jelinek V, Pozgayova M, Trnka A, Baslerova P, Honza M, Prochazka P (2015) Breeding success and brood parasitism affect return rate and dispersal distances in the great reed warbler. Behav Ecol Sociobiol 69:1845–1853

    Article  Google Scholar 

  • Krüger O (2007) Cuckoos, cowbirds and hosts: adaptations, trade-offs and constraints. Philos Trans R Soc Lond Ser B Biol Sci 362:1873–1886

    Article  Google Scholar 

  • Lack D (1968) Ecological adaptations for breeding in birds. Methuen, London

    Google Scholar 

  • Ladin ZS, D’Amico V, Baetens JM, Roth RR, Shriver WG (2016) Long-term dynamics in local host-parasite interactions linked to regional population trends. Ecosphere 7:e01420. https://doi.org/10.1002/ecs2.1420

    Article  Google Scholar 

  • Lawton JH (1993) Range, population abundance and conservation. Trends Ecol Evol 8:409–413

    Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm. Ecology 74:1659–1673

    Google Scholar 

  • Lima SL (2009) Predators and the breeding bird: behavioral and reproductive flexibility under the risk of predation. Biol Rev 84:485–513. https://doi.org/10.1111/j.1469-185X.2009.00085.x

    Article  PubMed  Google Scholar 

  • Lindholm AK (1999) Brood parasitism by the cuckoo on patchy reed warbler populations in Britain. J Anim Ecol 68:293–309

    Article  Google Scholar 

  • Lopez Pascua L, Hall AR, Best A, Morgan AD, Boots M, Buckling A (2014) Higher resources decrease fluctuating selection during host-parasite coevolution. Ecol Lett 17:1380–1388

    Article  PubMed  PubMed Central  Google Scholar 

  • Louder MIM, Schelsky WM, Albores AN, Hoover JP (2015) A generalist brood parasite modifies use of a host in response to reproductive success. Proc R Soc Lond B Biol Sci 282. https://doi.org/10.1098/rspb.2015.1615

  • Martín-Gálvez D, Soler JJ, Martínez JG, Krupa AP, Soler M, Burke T (2007) Cuckoo parasitism and productivity in different magpie subpopulations predict frequencies of the 457bp allele: a mosaic of coevolution at a small geographic scale. Evolution 61:2340–2348. https://doi.org/10.1111/j.1558-5646.2007.00194.x

    Article  PubMed  CAS  Google Scholar 

  • Molina-Morales M, Martínez JG, Avilés JM (2012a) Factors affecting natal and breeding magpie dispersal in a population parasitized by the great spotted cuckoo. Anim Behav 83:671–680

    Article  Google Scholar 

  • Molina-Morales M, Martínez JG, Martín-Gálvez D, Dawson A, Rodríguez-Ruiz J, Burke T, Avilés JM (2012b) Evidence of long-term structured cuckoo parasitism on individual magpie hosts. J Anim Ecol 82:389–398. https://doi.org/10.1111/1365-2656.12022

    Article  PubMed  Google Scholar 

  • Molina-Morales M, Martínez JG, Avilés JM (2016) Criteria for host selection in a brood parasite vary depending on parasitism rate. Behav Ecol 27:1441–1448. https://doi.org/10.1093/beheco/arw066

    Article  Google Scholar 

  • Møller AP, Soler JJ (2012) A coevolutionary framework based on temporal and spatial ecology of host parasite-interactions: a missing link in studies of brood parasitism. Chin Birds 3:259–273

    Article  Google Scholar 

  • Møller AP, Martin-Vivaldi M, Soler JJ (2004) Parasitism, host immune defence and dispersal. J Evol Biol 17:603–612

    Article  PubMed  Google Scholar 

  • Møller AP et al (2013) Assessing the effects of climate on host-parasite interactions: a comparative study of European birds and their parasites. PLoS One 8:e82886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Northfield TD, Ives AR (2013) Coevolution and the effects of climate change on interacting species. PLoS Biol 11:e1001685. https://doi.org/10.1371/journal.pbio.1001685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Norton DA, Carpenter MA (1998) Mistletoes as parasites: host specificity and speciation. Trends Ecol Evol 13:101–105

    Article  CAS  PubMed  Google Scholar 

  • Parejo D, Avilés JM (2007) Do avian brood parasites eavesdrop on heterospecific sexual signals revealing host quality? A review of the evidence. Anim Cogn 10:81–88

    Article  PubMed  Google Scholar 

  • Price PW (1980) Evolutionary biology of parasites. Monographs in population biology. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Procházka P et al (2011) Low genetic differentiation among reed warbler Acrocephalus scirpaceus populations across Europe. J Avian Biol 42:103–113

    Article  Google Scholar 

  • Quesada J (2007) The different roles of the roof density and nest size in the Iberian magpie nest. Acta Ethol 10:41–45

    Article  Google Scholar 

  • Quinn JL, Ueta M (2008) Protective nesting associations in birds. Ibis 150:146–167. https://doi.org/10.1111/j.1474-919X.2008.00823.x

    Article  Google Scholar 

  • Robinson SK, Rothstein SI, Brittingham MC, Petit LJ, Grzybowski JA (1995) Ecology and behavior of cowbirds and their impact on host populations. In: Finch DM, Martin TE (eds) Ecology and management of neotropical migratory birds. Oxford University Press, New York, pp 428–460

    Google Scholar 

  • Roldán M, Soler M (2011) Parental-care parasitism: how do unrelated offspring attain acceptance by foster parents? Behav Ecol 22:679–691

    Article  Google Scholar 

  • Rothstein SI (1990) A model system for coevolution: avian brood parasitism. Annu Rev Ecol Evol Syst 21:481–508

    Article  Google Scholar 

  • Schmid-Hempel P (2011) Evolutionary parasitology. The integrated study of infections, immunology, ecology, and genetics. Oxford University Press, Oxford

    Google Scholar 

  • Sedgwick JA (2004) Site fidelity, territory fidelity, and natal philopatry in willow flycatchers (Empidonax traillii). Auk 121:1103–1121. https://doi.org/10.1642/0004-8038(2004)121[1103:sftfan]2.0.co;2

    Article  Google Scholar 

  • Soler JJ (1999) Brood parasites: the advantages of being different species. In: Adams NJ, Slotow R (eds) Proceeding of the 22nd international ornithological congress, Durban. BirdLife South Africa, Johannesburg, pp 3098–3106

    Google Scholar 

  • Soler M (2014) Long-term coevolution between avian brood parasites and their hosts. Biol Rev 89:688–704

    Article  PubMed  Google Scholar 

  • Soler JJ, Soler M (2000) Brood-parasite interactions between great spotted cuckoos and magpies: a model system for studying coevolutionary relationships. Oecologia 125:309–320

    Article  PubMed  Google Scholar 

  • Soler M, Soler JJ, Martínez JG, Møller AP (1994) Micro-evolutionary change in host response to a brood parasite. Behav Ecol Sociobiol 35:295–301

    Article  Google Scholar 

  • Soler JJ, Soler M, Møller AP, Martínez JG (1995) Does the great spotted cuckoo choose magpie hosts according to their parenting ability? Behav Ecol Sociobiol 36:201–206

    Article  Google Scholar 

  • Soler JJ, Cuervo JJ, Møller AP, de Lope F (1998a) Nest building is a sexually selected behaviour in the barn swallow. Anim Behav 56:1435–1442

    Article  CAS  PubMed  Google Scholar 

  • Soler JJ, Møller AP, Soler M (1998b) Nest building, sexual selection and parental investment. Evol Ecol 12:427–441

    Article  Google Scholar 

  • Soler M, Soler JJ, Martínez JG, Pérez-Contreras T, Møller AP (1998c) Micro-evolutionary change and population dynamics of a brood parasite and its primary host: the intermittent arms race hypothesis. Oecologia 117:381–390

    Article  PubMed  Google Scholar 

  • Soler JJ, Martínez JG, Soler M, Møller AP (1999a) Genetic and geographic variation in rejection behavior of cuckoo eggs by European magpie populations: an experimental test of rejecter-gene flow. Evolution 53:947–956

    Article  PubMed  Google Scholar 

  • Soler JJ, Martínez JG, Soler M, Møller AP (1999b) Host sexual selection and cuckoo parasitism: an analysis of nest size in sympatric and allopatric magpie Pica pica populations parasitized by the great spotted cuckoo Clamator glandarius. Proc R Soc Lond B Biol Sci 266:1765–1771

    Article  Google Scholar 

  • Soler JJ, Møller AP, Soler M, Martínez JG (1999c) Interactions between a brood parasite and its host in relation to parasitism and immune defence. Evol Ecol Res 1:189–210

    Google Scholar 

  • Soler JJ, Sorci G, Soler M, Møller AP (1999d) Change in host rejection behavior mediated by the predatory behavior of its brood parasite. Behav Ecol 10:275–280. https://doi.org/10.1093/beheco/10.3.275

    Article  Google Scholar 

  • Soler JJ, De Neve L, Martínez JG, Soler M (2001a) Nest size affects clutch size and the start of incubation in magpies: an experimental study. Behav Ecol 12:301–307

    Article  Google Scholar 

  • Soler JJ, Martínez JG, Soler M, Møller AP (2001b) Coevolutionary interactions in a host-parasite system. Ecol Lett 4:470–476. https://doi.org/10.1046/j.1461-0248.2001.00247.x

    Article  Google Scholar 

  • Soler JJ, Martín-Vivaldi M, Møller AP (2009) Geographic distribution of suitable hosts explains the evolution of specialized gentes in the European cuckoo Cuculus canorus. BMC Evol Biol 9:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Soler JJ, Avilés JM, Møller AP, Moreno J (2012) Attractive blue-green egg coloration and cuckoo-host coevolution. Biol J Linn Soc 106:154–168

    Article  Google Scholar 

  • Soler JJ, Martin-Galvez D, De Neve L, Soler M (2013) Brood parasitism correlates with the strength of spatial autocorrelation of life history and defensive traits in Magpies. Ecology 94:1338–1346

    Article  PubMed  Google Scholar 

  • Soler JJ, Aviles JM, Martin-Galvez D, De Neve L, Soler M (2014a) Eavesdropping cuckoos: further insights on great spotted cuckoo preference by magpie nests and egg colour. Oecologia 175:105–115

    Article  PubMed  Google Scholar 

  • Soler JJ, De Neve L, Martin-Galvez D, Molina-Morales M, Perez-Contreras T, Ruiz-Rodríguez M (2014b) Do climatic conditions affect host and parasite phenotypes differentially? A case study of magpies and great spotted cuckoos. Oecologia 174:327–338

    Article  PubMed  Google Scholar 

  • Sorci G, Møller AP, Boulinier T (1997) Genetics of host-parasite interactions. Trends Ecol Evol 12:196–200

    Article  CAS  PubMed  Google Scholar 

  • Stokke BG et al (2007) Host density predicts presence of cuckoo parasitism in reed warblers. Oikos 116:913–922

    Article  Google Scholar 

  • Stokke BG, Hafstad I, Rudolfsen G, Moksnes A, Møller AP, Røskaft E, Soler M (2008) Predictors of resistance to brood parasitism within and among reed warbler populations. Behav Ecol 19:612–620

    Article  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. The University of Chicago Press, Chicago

    Google Scholar 

  • Thorogood R, Davies NB (2016) Combining personal with social information facilitates host defences and explains why cuckoos should be secretive. Sci Rep 6:19872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Baalen M, Hochberg ME (2001) Dispersal in antagonistic interactions. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University Press, Oxford, pp 299–310

    Google Scholar 

  • Wilsey CB, Lawler JJ, Cimprich D, Schumaker NH (2014) Dependence of the endangered black-capped vireo on sustained cowbird management. Conserv Biol 28:561–571. https://doi.org/10.1111/cobi.12176

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I thank the constructive comments by Jeff Hoover, Merche Molina-Morales and Manuel Soler on a previous version of the manuscript, which considerably improved and clarified the text. While writing this paper, I benefited from the funding by the Spanish Ministerio de Ciencia e Innovación, Ministerio de Economía y Competitividad and European funds (FEDER) (project CGL2013-48193-C3-1-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan J. Soler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soler, J.J. (2017). Interspecific Avian Brood Parasitism as a Model System for Exploring Ecological and Evolutionary Questions Related to Habitat Selection. In: Soler, M. (eds) Avian Brood Parasitism. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-73138-4_8

Download citation

Publish with us

Policies and ethics