Skip to main content

Brood Parasitism in Birds: A Coevolutionary Point of View

  • Chapter
  • First Online:
Avian Brood Parasitism

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Interspecific brood parasitism is a breeding strategy in which the brood parasite female evades all parental care by laying its eggs in host nests. Fitness costs imposed on hosts by brood parasitic adults or nestlings select for host defences setting the stage for a coevolutionary arms race in which brood parasites evolve counter-adaptations, which subsequently select for better host defences and so on. These so-called coevolutionary interactions have proven to be an excellent system for understanding coevolution. Here I review brood parasite–host interactions from the point of view of coevolutionary theory. After emphasizing the relevance of the costs provoked by brood parasitism, I present the traditional model of coevolution between brood parasites and their hosts, but I also incorporate new discoveries reported during the last two decades, which, frequently, do not support important predictions of coevolutionary theory. Next I describe the current situation of coevolution in brood parasite–host systems emphasizing three points that should be taken into account in studies centred on this subject. Later, I suggest three potentially important topics that have been almost neglected until now: (1) it would be superior to study as many defences as possible at all stages of the nesting cycle, (2) to examine the role of tolerance because this type of host defence contrary to what happen with resistance does not induce coevolutionary arms races and (3) to study the role of hormones in regulating host defensive responses to brood parasitism. Finally, a list of eleven future directions of research is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Als TD, Vila R, Kandul NP, Nash DR, Yen SH, Hsu YF, Mignault AA, Boomsma JJ, Pierce NE (2004) The evolution of alternative parasitic life histories in large blue butterflies. Nature 432:386–390

    Article  PubMed  CAS  Google Scholar 

  • Angelier F, Chastel O (2009) Stress, prolactin and parental investment in birds: a review. Gen Comp Endocrinol 163:142–148

    Article  PubMed  CAS  Google Scholar 

  • Antonov A, Stokke BG, Moksnes A, Røskaft E (2009) Evidence for egg discrimination preceding failed rejection attempts in a small cuckoo host. Biol Lett 5:169–171

    Article  PubMed  Google Scholar 

  • Antonov A, Stokke BG, Vikan JR, Fossøy F, Ranke PS, Røskaft E, Moksnes A, Møller AP, Shykoff JA (2010) Egg phenotype differentiation in sympatric cuckoo Cuculus canorus gentes. J Evol Biol 23:1170–1182

    Article  PubMed  Google Scholar 

  • Avilés JM, Stokke BG, Moksnes A, Røskaft E, Asmul M, Møller AP (2006) Rapid increase in cuckoo egg matching in a recently parasitized reed warbler population. J Evol Biol 19:1901–1910

    Article  PubMed  Google Scholar 

  • Avilés JM, Vikan JR, Fossøy F, Antonov A, Moksnes A, Røskaft E, Shykoff JA, Møller AP, Stokke BG (2012) Egg phenotype matching by cuckoos in relation to discrimination by hosts and climatic conditions. Proc R Soc Lond B 279:1967–1976

    Article  Google Scholar 

  • Baba R, Nagata Y, Yamagishi S (1990) Brood parasitism and egg robbing among three freshwater fish. Anim Behav 40(776):778

    Google Scholar 

  • Baglione V, Bolopo D, Canestrari D, Martínez JG, Roldán M, Vila M, Soler M (2017) Spatiotemporal variation of host use in a brood parasite: the role of the environment. Behav Ecol 28:49–58

    Article  Google Scholar 

  • Birkhead T (1991) The Magpies. The ecology and behaviour of Black-billed and Yellow-billed Magpies. Poyser, London

    Google Scholar 

  • Boulton AM, Polis GA (2002) Brood parasitism among spiders: interaction between salticids and Diguetia mojavea. Ecology 83:282–287

    Article  Google Scholar 

  • Breuner CW, Patterson SH, Hahn TP (2008) In search of relationships between the acute adrenocortical response and fitness. Gen Comp Endocrinol 157:288–295

    Article  PubMed  CAS  Google Scholar 

  • Briskie JV, Sealy SG, Hobson KA (1992) Behavioral defenses against avian brood parasitism in sympatric and allopatric host populations. Evolution 46:334–340

    Article  PubMed  Google Scholar 

  • Britton NF, Planque R, Franks NR (2007) Evolution of defence portfolios in exploiter-victim systems. Bull Math Biol 69:957–988

    Article  PubMed  CAS  Google Scholar 

  • Brooke MD, Davies NB, Noble DG (1998) Rapid decline of host defences in response to reduced cuckoo parasitism: behavioural flexibility of reed warblers in a changing world. Proc R Soc Lond B 265:1277–1282

    Article  Google Scholar 

  • Brown JL, Morales V, Summers K (2009) Tactical reproductive parasitism via larval cannibalism in Peruvian poison frogs. Biol Lett 5:148–151

    Article  PubMed  Google Scholar 

  • Cossa NA, Tuero DT, Reboreda JC, Fiorini VD (2017) Egg pecking and puncturing behaviors in shiny and screaming cowbirds: effects of eggshell strength and degree of clutch completion. Behav Ecol Sociobiol 71:60. https://doi.org/10.1007/s00265-017-2289-1

    Article  Google Scholar 

  • Cruz A, Wiley JW (1989) The decline of an adaptation in the absence of a presumed selection pressure. Evolution 43:55–62

    Article  PubMed  Google Scholar 

  • Davies NB (2000) Cuckoos, cowbirds and other cheats. T&AD Poyser, London

    Google Scholar 

  • Davies NB (2011) Cuckoo adaptations: trickery and tuning. J Zool 284:1–14

    Article  Google Scholar 

  • Davies NB, de Brooke ML (1988) Cuckoos versus reed warblers: adaptations and counteradaptations. Anim Behav 36:262–284

    Article  Google Scholar 

  • Davies NB, de Brooke ML (1989a) An experimental study of co-evolution between the cuckoo, Cuculus canorus, and its hosts. I. Host egg discrimination. J Anim Ecol 58:207–224

    Article  Google Scholar 

  • Davies NB, de Brooke ML (1989b) An experimental study of co-evolution between the cuckoo, Cuculus canorus, and its hosts. II. Host egg markings, chick discrimination and general discussion. J Anim Ecol 58:225–236

    Article  Google Scholar 

  • Davies NB, Bourke AFG, de Brooke ML (1989) Cuckoos and parasitic ants: interspecific brood parasitism as an evolutionary arms race. Trends Ecol Evol 4:274–278

    Article  PubMed  CAS  Google Scholar 

  • Davies NB, de Brooke ML, Kacelnik A (1996) Recognition errors and probability of parasitism determine whether reed warblers should accept or reject mimetic cuckoo eggs. Proc R Soc Lond B 263:925–931

    Article  Google Scholar 

  • de Brooke ML, Davies NB (1988) Egg mimicry by cuckoos Cuculus canorus in relation to discrimination by hosts. Nature 335:630–632

    Article  Google Scholar 

  • De Mársico MC, Gantchoff MG, Reboreda JC (2012) Host–parasite coevolution beyond the nestling stage? Mimicry of host fledglings by the specialist screaming cowbird. Proc R Soc Lond B 279:3401–3408

    Article  Google Scholar 

  • DeWitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13:77–81

    Article  PubMed  CAS  Google Scholar 

  • Doebeli M, Ispolatov I (2010) Complexity and diversity. Science 328:494–497

    Article  PubMed  CAS  Google Scholar 

  • Feeney WE, Welbergen JA, Langmore NE (2012) The frontline of avian brood parasite-host coevolution. Anim Behav 84:3–12

    Article  Google Scholar 

  • Feeney WE, Medina I, Somveille M, Heinsohn R, Hall ML, Mulder RA, Stein JA, Kilner RM, Langmore NE (2013) Brood parasitism and the evolution of cooperative breeding in birds. Science 342:1506–1508

    Article  PubMed  CAS  Google Scholar 

  • Feeney WE, Welbergen JA, Langmore NE (2014) Brood parasites and their hosts. Annu Rev Ecol Evol Syst 45:227–246

    Article  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407

    Article  Google Scholar 

  • Gibson G, Wagner G (2000) Canalization in evolutionary genetics: a stabilizing theory? Bioessays 22:372–380

    Article  PubMed  CAS  Google Scholar 

  • Gilman RT, Nuismer SL, Jhwueng DC (2012) Coevolution in multidimensional trait space favours escape from parasites and pathogens. Nature 483:328–330

    Article  PubMed  CAS  Google Scholar 

  • Gomulkiewicz R, Thompson JN, Holt RD, Nuismer SL, Hochberg ME (2000) Hot spots, cold spots, and the geographic mosaic theory of coevolution. Am Nat 156:156–174

    Article  PubMed  Google Scholar 

  • Grim T (2006) The evolution of nestling discrimination by hosts of parasitic birds: why is rejection so rare? Evol Ecol Res 8:785–802

    Google Scholar 

  • Guigueno MF, Sealy SG (2012) Increased investigation of manipulated clutches suggests egg recognition without rejection in a brown-headed cowbird (Molothrus ater) host, the yellow warbler. Auk 129:17–25

    Article  Google Scholar 

  • Hale K, Briskie JV (2007) Response of introduced European birds in New Zealand to experimental brood parasitism. J Avian Biol 38:198–204

    Article  Google Scholar 

  • Hannon SJ, Wilson S, McCallum CA (2009) Does cowbird parasitism increase predation risk to American Redstart nests? Oikos 118:1035–1043

    Article  Google Scholar 

  • Hauber ME (2002) Is reduced clutch size a cost of parental care in Eastern Phoebes (Sayornis phoebe)? Behav Ecol Sociobiol 51:503–509

    Article  Google Scholar 

  • Hauber ME (2006) A future cost of misdirected parental care for brood parasitic young? Folia Zool 55:367–374

    Google Scholar 

  • Hoover JP, Reetz MJ (2006) Brood parasitism increases provisioning rate and reduces offspring recruitment and adult return rates in a cowbird host. Oecologia 149:165–173

    Article  PubMed  Google Scholar 

  • Ibáñez-Álamo JD, Arco L, Soler M (2012a) Experimental evidence for a predation cost of begging using active nests and real chicks. J Ornithol 153:801–807

    Article  Google Scholar 

  • Ibáñez-Álamo JD, de Neve L, Roldán M, Rodríguez J, Trouvé C, Chastel O, Soler M (2012b) Corticosterone levels in host and parasite nestlings: is brood parasitism a hormonal stressor? Horm Behav 61:590–597

    Article  PubMed  CAS  Google Scholar 

  • Janzen DH (1980) When is it coevolution? Evolution 34:611–612

    Article  PubMed  Google Scholar 

  • Jenkins JMA, Faaborg J (2016) Potential effects of brown-headed cowbirds (Molothrus ater) on host postfledging dispersal and survival. Wilson J Ornithol 128:404–411

    Article  Google Scholar 

  • Kilner RM, Langmore NE (2011) Cuckoos versus hosts in insects and birds: adaptations, counter-adaptations and outcomes. Biol Rev Camb Philos Soc 86:836–852

    Article  PubMed  Google Scholar 

  • Krüger O, Kolss M (2013) Modelling the evolution of common cuckoo host-races: speciation or genetic swamping? J Evol Biol 26:2447–2457

    Article  PubMed  Google Scholar 

  • Krüger O, Davies NB, Sorenson MD (2007) The evolution of sexual dimorphism in parasitic cuckoos: sexual selection or coevolution? Proc R Soc Lond B 274:1553–1560

    Article  Google Scholar 

  • Kuehn MJ, Peer BD, Rothstein SI (2014) Variation in host response to brood parasitism reflects evolutionary differences and not phenotypic plasticity. Anim Behav 88:21–28

    Article  Google Scholar 

  • Lahty DC (2005) Evolution of bird eggs in the absence of cuckoo parasitism. Proc Natl Acad Sci USA 102:18057–18062

    Article  CAS  Google Scholar 

  • Langmore NE, Hunt S, Kilner RM (2003) Escalation of a co-evolutionary arms race through host rejection of brood parasitic young. Nature 422:157–160

    Article  CAS  PubMed  Google Scholar 

  • Langmore NE, Feeney WE, Crowe-Riddell J, Luan H, Louwrens KM, Cockburn A (2012) Learned recognition of brood parasitic cuckoos in the superb fairy-wren Malurus cyaneus. Behav Ecol 23:798–805

    Article  Google Scholar 

  • Lindholm AK (1999) Brood parasitism by the cuckoo on patchy reed warbler populations in Britain. J Anim Ecol 68:293–309

    Article  Google Scholar 

  • Lotem A (1993) Learning to recognize nestlings is maladaptive for cuckoo Cuculus canorus hosts. Nature 362:743–744

    Article  Google Scholar 

  • Mark MM, Rubenstein DR (2013) Physiological costs and carry-over effects of avian interspecific brood parasitism influence reproductive tradeoffs. Horm Behav 63:717–722

    Article  PubMed  Google Scholar 

  • Martínez JG, Soler JJ, Soler M, Møller AP, Burke T (1999) Comparative population structure and gene flow of a brood parasite, the great spotted cuckoo (Clamator glandarius), and its primary host, the magpie (Pica pica). Evolution 53:269–278

    PubMed  Google Scholar 

  • Martín-Gálvez D, Soler JJ, Martínez JG, Krupa AP, Soler M, Burke T (2007) Cuckoo parasitism and productivity in different magpie subpopulations predict frequencies of the 457bp allele: A mosaic of coevolution at a small geographic scale. Evolution 61:2340–2348

    Article  PubMed  CAS  Google Scholar 

  • Martín-Vivaldi M, Soler M, Møller AP (2002) Unrealistically high costs of rejecting artificial models for cuckoo Cuculus canorus host. J Avian Biol 33:295–301

    Article  Google Scholar 

  • Martín-Vivaldi M, Soler JJ, Møller AP, Pérez-Contreras T, Soler M (2012) Importance of nest site and habitat in egg recognition ability of potential hosts of the European Cuckoo Cuculus canorus. Ibis 155:140–155

    Article  Google Scholar 

  • Medina I, Langmore NE (2015) Coevolution is linked with phenotypic diversification but not speciation in avian brood parasites. Proc R Soc B 282:20152056

    Article  PubMed  PubMed Central  Google Scholar 

  • Medina I, Langmore NE (2016) The evolution of acceptance and tolerance in hosts of avian brood parasites. Biol Rev 91:569–577

    Article  PubMed  Google Scholar 

  • Medzhitov R, Schneider DS, Soares MP (2012) Disease tolerance as a defense strategy. Science 335:936–941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mendelson TC, Fitzpatrick CL, Hauber ME, Pence CH, Rodríguez RL, Safran RJ, Stern CA, Stevens JR (2016) Cognitive phenotypes and the evolution of animal decisions. Trends Ecol Evol 31:850–859

    Article  PubMed  Google Scholar 

  • Moksnes A, Røskaft E, Braa AT (1991) Rejection behavior by common cuckoo hosts towards artificial brood parasite eggs. Auk 108:348–354

    Google Scholar 

  • Møller AP, Soler JJ (2012) A coevolutionary framework based on temporal and spatial ecology of host-parasite interactions: a missing link in studies of brood parasitism. Chinese Birds 3:259–273

    Article  Google Scholar 

  • Moskát C, Hansson B, Barabas L, Bartol I, Karcza Z (2008) Common cuckoo Cuculus canorus parasitism, antiparasite defence and gene flow in closely located populations of great reed warblers Acrocephalus arundinaceus. J Avian Biol 39:663–671

    Article  Google Scholar 

  • Moskát C, Bán M, Hauber ME (2014) Naïve hosts of avian brood parasites accept foreign eggs, whereas older hosts fine-tune foreign egg discrimination during laying. Front Zool 11:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller JK, Eggert AK, Dressel J (1990) Intraspecific brood parasitism in the burying beetle, Necrophorus vespilloides (Coleoptera, Silphidae). Anim Behav 40:491–499

    Article  Google Scholar 

  • Ouyang JQ, Sharp PJ, Dawson A, Quetting M, Hau M (2011) Hormone levels predict individual differences in reproductive success in a passerine bird. Proc R Soc B Biol Sci 278:2537–2545

    Article  CAS  Google Scholar 

  • Payne RB, Payne LL (1998) Brood parasitism by cowbirds: risks and effects on reproductive success and survival in Indigo Buntings. Behav Ecol 9:64–73

    Article  Google Scholar 

  • Peer BD, Kuehn MJ, Rothstein SI, Fleischer RC (2011) Persistence of host defence behaviour in the absence of brood parasitism. Biol Lett 7:670–673

    Article  PubMed  PubMed Central  Google Scholar 

  • Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209:2362–2367

    Article  PubMed  Google Scholar 

  • Roldán M, Soler M (2011) Parental care parasitism: how unrelated offspring attain acceptance by foster parents? Behav Ecol 22:679–691

    Article  Google Scholar 

  • Røskaft E, Moksnes A, Meilvang D, Bicík V, Jemelíková J, Honza M (2002) No evidence for recognition errors in Acrocephalus warblers. J Avian Biol 33:31–38

    Article  Google Scholar 

  • Rothstein SI (1974) Mechanisms of avian egg recognition: possible learned and innate factors. Auk 91:796–807

    Article  Google Scholar 

  • Rothstein SI (1978) Mechanisms of avian egg-recognition: additional evidence for learned components. Anim Behav 26:671–677

    Article  Google Scholar 

  • Rothstein SI (1990) A model system for coevolution: avian brood parasitism. Annu Rev Ecol Syst 21:481–508

    Article  Google Scholar 

  • Rothstein SI (2001) Relic behaviours, coevolution and the retention versus loss of host defences after episodes of avian brood parasitism. Anim Behav 61:95–107

    Article  PubMed  Google Scholar 

  • Ruiz-Raya F (2017) Defences against brood parasitism in the common blackbird (Turdus merula): plasticity, physiology and evolution. PhD thesis, University of Granada, Spain

    Google Scholar 

  • Ruiz-Raya F, Soler M (2018) Rejection of parasitic eggs: an updated terminology for a complex process. J Avian Biol (in press)

    Google Scholar 

  • Ruiz-Raya F, Soler M, Sánchez-Pérez LL, Ibáñez-Álamo JD (2015) Could a factor that does not affect egg recognition influence the decision of rejection? PLoS One 10(8):e0135624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sato T (1986) A brood parasitic catfish of mouth-brooding cichlid fishes in Lake Tanganyika. Nature 323:58–59

    Article  PubMed  CAS  Google Scholar 

  • Smith JNM (1981) Cowbird parasitism, host fitness, and age of the host female in an island Song Sparrow population. Condor 83:152–161

    Article  Google Scholar 

  • Soler M (2009) Co-evolutionary arms race between brood parasites and their hosts at the nestling stage. J Avian Biol 40:237–240

    Article  Google Scholar 

  • Soler M (2014) Long-term coevolution between avian brood parasites and their hosts. Biol Rev 89:688–704

    Article  PubMed  Google Scholar 

  • Soler M, Møller AP (1990) Duration of sympatry and coevolution between the great spotted cuckoo and its magpie host. Nature 343:748–750

    Article  Google Scholar 

  • Soler JJ, Soler M (2000) Brood-parasite interactions between great spotted cuckoos and magpies: a model system for studying coevolutionary relationships. Oecologia 125:309–320

    Article  PubMed  Google Scholar 

  • Soler JJ, Soler M (2017) Evolutionary change: facultative virulence by brood parasites and tolerance and plastic resistance by hosts. Anim Behav 125:101–107

    Article  Google Scholar 

  • Soler M, Soler JJ, Martínez JG, Møller AP (1994) Micro-evolutionary change in host response to a brood parasite. Behav Ecol Sociobiol 35:295–301

    Article  Google Scholar 

  • Soler M, Soler JJ, Martínez JG (1997) Great spotted cuckoos improve their reproductive success by damaging magpie host eggs. Anim Behav 54:1227–1233

    Article  PubMed  CAS  Google Scholar 

  • Soler JJ, Martínez JG, Soler M, Møller AP (1999) Genetic and geographic variation in rejection behavior of cuckoo eggs by European magpie populations: an experimental test of rejecter-gene flow. Evolution 53:947–956

    Article  PubMed  Google Scholar 

  • Soler JJ, Martínez JG, Soler M, Møller AP (2001) Coevolutionary interactions in a host-parasite meta-population. Ecol Lett 4:470–476

    Article  Google Scholar 

  • Soler M, Ruiz-Castellano C, Fernández-Pinos MC, Rösler A, Ontanilla J, Pérez-Contreras T (2011a) House sparrows selectively eject parasitic conspecific eggs and incur very low rejection costs. Behav Ecol Sociobiol 65:1997–2005

    Article  Google Scholar 

  • Soler JJ, Martín-Gálvez D, Martínez JG, Soler M, Canestrari D, Abad-Gómez M, Møller AP (2011b) Evolution of tolerance by magpies to brood parasitism by great spotted cuckoos. Proc R Soc B 278:2047–2052

    Article  PubMed  CAS  Google Scholar 

  • Soler M, Fernández-Morante J, Espinosa F, Martín-Vivaldi M (2012) Pecking but accepting the parasitic eggs may not reflect ejection failure: the role of motivation. Ethology 118:662–672

    Article  Google Scholar 

  • Soler M, Ruiz-Castellano C, Carra LG, Ontanilla J, Martín-Galvez D (2013) Do first-time breeding females imprint on their own eggs? Proc R Soc B 280:20122518

    Article  PubMed  PubMed Central  Google Scholar 

  • Soler M, de Neve L, Roncalli G, Macías-Sánchez E, Ibáñez-Álamo JD, Pérez-Contreras T (2014a) Great spotted cuckoo fledglings are disadvantaged by magpie host parents when reared together with magpie nestlings. Behav Ecol Sociobiol 68:333–342

    Article  Google Scholar 

  • Soler M, Pérez-Contreras T, Ibáñez-Álamo JD, Roncalli G, Macías-Sánchez E, de Neve L (2014b) Great spotted cuckoo fledglings often receive feedings from other magpie adults than their foster parents: which magpies accept to feed foreign cuckoo fledglings? PLoS One 9(10):e107412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soler M, Ruiz-Raya F, Roncalli G, Ibáñez-Álamo JD (2017) Relationships between egg-recognition and egg-ejection in a grasp-ejector species. PLoS One 12(2):e0166283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spottiswoode CN, Stevens M (2011) How to evade a coevolving brood parasite: egg discrimination versus egg variability as host defences. Proc R Soc B 278:3566–3573

    Article  PubMed  PubMed Central  Google Scholar 

  • Stokke BG, Honza M, Moksnes A, Røskaft E, Rudolfsen G (2002) Costs associated with recognition and rejection of parasitic eggs in two European passerines. Behaviour 139:629–644

    Article  Google Scholar 

  • Stokke BG, Moksnes A, Røskaft E (2005) The enigma of imperfect adaptations in hosts of avian brood parasites. Ornithol Sci 4:17–29

    Article  Google Scholar 

  • Stokke BG, Hafstad I, Rudolfsen G, Moksnes A, Møller AP, Røskaft E, Soler M (2008) Predictors of resistance to brood parasitism within and among reed warbler populations. Behav Ecol 19:612–620

    Article  Google Scholar 

  • Svensson EI, Råberg L (2010) Resistance and tolerance in animal enemy-victim coevolution. Trends Ecol Evol 25:267–274

    Article  PubMed  Google Scholar 

  • Thompson JN (1994) The coevolutionary process. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Thompson JN, Cunningham BM (2002) Geographic structure and dynamics of coevolutionary selection. Nature 417:735–738

    Article  PubMed  CAS  Google Scholar 

  • Tuero DT, Fiorini VD, Reboreda JC (2007) Effects of shiny cowbird Molothrus bonariensis parasitism on different components of house wren Troglodytes aedon reproductive success. Ibis 149:521–529

    Article  Google Scholar 

  • Vermeij GJ (1982) Unsuccessful predation and evolution. Am Nat 120:701–720

    Article  Google Scholar 

  • Vikan JR, Stokke BG, Rutila J, Huhta E, Moksnes A, Røskaft E (2010) Evolution of defences against cuckoo (Cuculus canorus) parasitism in bramblings (Fringilla montifringilla): a comparison of four populations in Fennoscandia. Evol Ecol 24:1141–1157

    Article  Google Scholar 

  • Welbergen JA, Davies NB (2008) Reed warblers discriminate cuckoos from sparrowhawks with graded alarm signals that attract mates and neighbours. Anim Behav 76:811–822

    Article  Google Scholar 

  • Welbergen JA, Davies NB (2009) Strategic variation in mobbing as a front line of defense against brood parasitism. Curr Biol 19:235–240

    Article  PubMed  CAS  Google Scholar 

  • Wingfield JC, Manney DL, Breuner CW, Jacobs JD, Lynn S, Ramenofsky M, Richardson RD (1998) Ecological bases of hormone—behavior interactions: the “Emergency Life History Stage”. Am Zool 38:191–206

    Article  CAS  Google Scholar 

  • Yang C, Liang W, Cai Y, Shi S, Takasu F, Møller AP, Antonov A, Fossøy F, Moksnes A, Røskaft E, Stokke BG (2010) Coevolution in action: disruptive selection on egg colour in an avian brood parasite and its host. PLoS One 5:e10816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

I thank Anders Møller and Francisco Ruiz-Raya for their constructive and helpful review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Soler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soler, M. (2017). Brood Parasitism in Birds: A Coevolutionary Point of View. In: Soler, M. (eds) Avian Brood Parasitism. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-73138-4_1

Download citation

Publish with us

Policies and ethics