Skip to main content

On Parabolic Dichotomy

  • Chapter
  • First Online:
Book cover Geometric Function Theory in Higher Dimension

Part of the book series: Springer INdAM Series ((SINDAMS,volume 26))

Abstract

If f is a parabolic holomorphic self-map of the unit disc \(\mathbb {D}\subset \mathbb {C}\), then either for every point z one has \(\lim _{n\to \infty } k_{\mathbb {D}}(f^{n+1}(z),f^n(z))>0\), or the Poincaré distance of any two f-orbits converges to zero. It is an open question whether such a dichotomy holds in the unit ball \(\mathbb {B}^q\subset \mathbb {C}^q\). We show how this question is related to the theory of canonical Kobayashi hyperbolic semi-models, to commuting holomorphic self-maps of the ball and to a purely geometric problem about biholomorphisms of the ball.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arosio, L.: The stable subset of a univalent self-map. Math. Z. 281(3–4), 1089–1110 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arosio, L.: Canonical models for the forward and backward iteration of holomorphic maps. J. Geom. Anal. 27(2), 1178–1210 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arosio, L., Bracci, F.: Canonical models for holomorphic iteration. Trans. Am. Math. Soc. 368(5), 3305–3339 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arosio, L., Bracci, F.: Simultaneous models for commuting holomorphic self-maps of the ball. Adv. Math. 321, 486–512 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arosio, L., Gumenyuk, P.: Valiron and Abel equations for holomorphic self-maps of the polydisc. Int. J. Math. 27(4) (2016)

    Google Scholar 

  6. Baker, I.N., Pommerenke, C.: On the iteration of analytic functions in a half-plane II. J. Lond. Math. Soc. (2) 20(2), 255–258 (1979)

    Google Scholar 

  7. Bayart, F.: The linear fractional model on the ball. Rev. Mat. Iberoam. 24(3), 765–824 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bracci, F., Gentili, G.: Solving the Schröder equation at the boundary in several variables. Michigan Math. J. 53(2), 337–356 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bracci, F., Gentili, G., Poggi-Corradini, P.: Valiron’s construction in higher dimensions. Rev. Mat. Iberoam. 26(1), 57–76 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cowen, C.C.: Iteration and the solution of functional equations for functions analytic in the unit disk. Trans. Am. Math. Soc. 265(1), 69–95 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cowen, C.C.: Commuting analytic functions. Trans. Am. Math. Soc. 283, 685–695 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Fabritiis, C., Gentili, G.: On holomorphic maps which commute with hyperbolic automorphisms. Adv. Math. 144(2), 119–136 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fornæss, J.E., Sibony, N.: Increasing sequences of complex manifolds. Math. Ann. 255(3), 351–360 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hervé, M.: Quelques propriétés des applications analytiques d’une boule à m dimensions dans elle-même. J. Math. Pures Appl. 42, 117–147 (1963)

    MathSciNet  MATH  Google Scholar 

  15. Jury, T.: Valiron’s theorem in the unit ball and spectra of composition operators. J. Math. Anal. Appl. 368(2), 482–490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Königs, G.: Recherches sur les intégrales de certaines équations fonctionnelles. Ann. Sci. École Norm. Sup. (3) 1, 3–41 (1884)

    Google Scholar 

  17. Ostapyuk, O.: Backward iteration in the unit ball. Ill. J. Math. 55(4), 1569–1602 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Pommerenke, C.: On the iteration of analytic functions in a half plane. J. Lond. Mat. Soc. (2) 19(3), 439–447 (1979)

    Google Scholar 

  19. Rosay, J.P., Rudin, W.: Holomorphic maps from \(\mathbb C^n\) to \(\mathbb C^n\). Trans. Am. Math. Soc. 310(1), 47–86 (1988)

    Google Scholar 

  20. Valiron, G.: Sur l’itération des fonctions holomorphes dans un demi-plan. Bull. Sci. Math. 47, 105–128 (1931)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the SIR grant “NEWHOLITE—New methods in holomorphic iteration” n. RBSI14CFME.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Arosio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arosio, L. (2017). On Parabolic Dichotomy. In: Bracci, F. (eds) Geometric Function Theory in Higher Dimension. Springer INdAM Series, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-73126-1_3

Download citation

Publish with us

Policies and ethics