Fixed Points of Pseudo-Contractive Holomorphic Mappings
Abstract
We study conditions that ensure the existence of fixed points of pseudo-contractive mappings originally considered by Browder, Kato, Kirk and Morales. Specifically we consider holomorphic pseudo-contractions on the open unit ball of a complex Banach space which in general are not necessarily bounded. As a consequence, we obtain sufficient conditions for the existence and uniqueness of the common fixed point of a semigroup of holomorphic self-mappings and study its rate of convergence to this point.
Keywords
Holomorphic maps Fixed point theory Contractive mapsMathematics Subject Classification
37C25 32A10Notes
Acknowledgements
The work was partially supported by the European Commission under the project STREVCOMS PIRSES-2013-612669. The publication was prepared with the support of the “RUDN University Program 5-100”. Both authors are grateful to the anonymous referee for the very fruitful remarks.
References
- 1.Aharonov, D., Elin, M., Reich, S., Shoikhet, D.: Parametric representations of semi-complete vector fields on the unit balls in \({\mathbb C}^n\) and in Hilbert space. Atti Accad. Naz. Lincei 10, 229–253 (1999)Google Scholar
- 2.Browder, F.E.: Nonlinear mappings of nonexpansive and accretive type in Banach spaces. Bull. Am. Math. Soc. 73, 875–882 (1967)MathSciNetCrossRefMATHGoogle Scholar
- 3.Budzyńska, M., Kuczumow, T., Reich, S.: The Denjoy-Wolff iteration property in complex Banach spaces. J. Nonlinear Convex Anal. 17, 1213–1221 (2016)MathSciNetMATHGoogle Scholar
- 4.Dineen, S.: The Schwartz Lemma. Clarendon, Oxford (1989)MATHGoogle Scholar
- 5.Earle, C.J., Hamilton, R.S.: A fixed point theorem for holomorphic mappings. In: Proceedings of Symposia in Pure Mathematics, vol. 16, pp. 61–65. American Mathematical Society, Providence, RI (1970)Google Scholar
- 6.Elin, M.: Extension operators via semigroups. J. Math. Anal. Appl. 377, 239–250 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 7.Goebel, K., Reich, S.: Uniform convexity, hyperbolic geometry, and nonexpansive mappings. In: Monographs and Textbooks in Pure and Applied Mathematics, vol. 83. Marcel Dekker, New York (1984)Google Scholar
- 8.Graham, I., Kohr, G.: Univalent mappings associated with the Roper-Suffridge extension operator. J. Anal. Math. 81, 331–342 (2000)MathSciNetCrossRefMATHGoogle Scholar
- 9.Harris, L.A.: Schwarz-Pick systems of pseudometrics for domains in normed linear spaces. In: Advances in Holomorphy, pp. 345–406. North Holland, Amsterdam (1979)Google Scholar
- 10.Harris, L.A.: Fixed points of holomorphic mappings for domains in Banach spaces. Abstr. Appl. Anal. 5, 261–274 (2003)MathSciNetCrossRefMATHGoogle Scholar
- 11.Harris, L.A.: Fixed point theorems for infinite dimensional holomorphic functions. J. Korean Math. Soc. 41, 175–192 (2004)MathSciNetCrossRefMATHGoogle Scholar
- 12.Khatskevich, V., Reich, S., Shoikhet, D.: Complex dynamical systems on bounded symmetric domains. Electron. J. Differ. Equ. 19, 1–9 (1997)MathSciNetMATHGoogle Scholar
- 13.Kirk, W.A., Schöneberg, R.: Some results on pseudocontractive mappings. Pac. J. Math. 71, 89–100 (1977)CrossRefMATHGoogle Scholar
- 14.Krasnosel’skiï, M.A., Zabreïko, P.P.: Geometrical Methods of Nonlinear Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 263. Springer, Berlin (1984)Google Scholar
- 15.Krasnosel’skiï, M.A., Vaïnikko, G.M., Zabreïko, P.P., Rutitskii, Ya.B., Stecenko, V.Ya.: Approximate Solution of Operator Equations. Wolters-Noordhoff, Groningen (1972)Google Scholar
- 16.Kuczumow, T., Reich, S., Shoikhet, D.: Fixed points of holomorphic mappings: a metric approach. In: Handbook of Metric Fixed Point Theory, pp. 437–515. Kluwer, Dordrecht (2001)Google Scholar
- 17.MacCluer, B.D.: Iterates of holomorphic self-maps of the unit ball in \(\mathbb {C}^n\). Michigan Math. J. 30, 97–106 (1983)Google Scholar
- 18.Morales, C.: Pseudo-contractive mappings and the Leray-Schauder boundary condition. Comment. Math. Univ. Carol. 4, 745–756 (1979)MATHGoogle Scholar
- 19.Morales, C.: Remarks on pseudo-contractive mappings. J. Math. Anal. Appl. 87, 158–164 (1982)MathSciNetCrossRefMATHGoogle Scholar
- 20.Pfaltzgraff, J.A., Suffridge, T.J.: An extension theorem and linear invariant families generated by starlike maps. Ann. Univ. Mariae Curie-Sk lodowska Sect. A 53, 193–207 (1999)MathSciNetMATHGoogle Scholar
- 21.Reich, S.: Minimal displacement of points under weakly inward pseudo-lipschitzian mappings. Atti Accad. Naz. Lincei 59, 40–44 (1975)MathSciNetMATHGoogle Scholar
- 22.Reich, S.: On the fixed point theorems obtained from existence theorems for differential equations. J. Math. Anal. Appl. 54, 26–36 (1976)MathSciNetCrossRefMATHGoogle Scholar
- 23.Reich, S., Shoikhet, D.: Generation theory for semigroups of holomorphic mappings in Banach spaces. Abstr. Appl. Anal. 1, 1–44 (1996)MathSciNetCrossRefMATHGoogle Scholar
- 24.Reich, S., Shoikhet, D.: Semigroups and generators on convex domains with the hyperbolic metric. Atti Accad. Naz. Lincei 8, 231–250 (1997)MathSciNetMATHGoogle Scholar
- 25.Reich, S., Shoikhet, D.: The Denjoy-Wolff theorem. Ann. Univ. Mariae Curie-Sk lodowska Sect. A 51, 219–240 (1997)MathSciNetMATHGoogle Scholar
- 26.Reich, S., Shoikhet, D.: Averages of holomorphic mappings and holomorphic retractions on convex hyperbolic domains. Stud. Math. 130, 231–244 (1998)MathSciNetMATHGoogle Scholar
- 27.Reich, S., Shoikhet, D.: The Denjoy–Wolff theorem. Encyclopedia of Mathematics, Supplement 3, pp. 121–123. Kluwer, Dordrecht (2002)Google Scholar
- 28.Reich, S., Shoikhet, D.: Nonlinear Semigroups, Fixed Points, and the Geometry of Domains in Banach Spaces. Imperial College, London (2005)CrossRefMATHGoogle Scholar
- 29.Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer, Berlin (1993)CrossRefMATHGoogle Scholar
- 30.Shoikhet, D.: Semigroups in Geometrical Function Theory. Kluwer, Dordrecht (2001)CrossRefMATHGoogle Scholar
- 31.Stachura, A.: Iterates of holomorphic self-maps of the unit ball in Hilbert space. Proc. Am. Math. Soc. 93, 88–90 (1985)MathSciNetCrossRefMATHGoogle Scholar
- 32.Trenogin, V.A.: Functional Analysis. Nauka, Moscow (1980)MATHGoogle Scholar
- 33.Vainberg, M.M., Trenogin, V.A.: Theory of Bifurcation of Solutions of Nonlinear Equations. Nauka, Moscow (1969)MATHGoogle Scholar