Skip to main content

The Tools

  • Chapter
  • First Online:
Lessons on Synthetic Bioarchitectures

Abstract

The ambitious nature of projects in synthetic biology requires special methods to match them. For those projects that require extensive modification of genes and others perhaps whole genomes, conventional techniques used in molecular biology have to be improved to meet their needs. These needs include the necessity for gene modification methods to be reliable, easy to handle, and compatible between laboratories. This implies the need for certain standards, particularly for the materials and methods used. One approach to achieve this is to reduce the genetic material manipulated to highly interchangeable and interconnectable modules. We will look at how BioBricks allow us to do this. Another requirement is that the techniques used be precise and capable of large-scale changes to the target genetic material. We will see how the CRISPR/Cas9 system was developed to meet this need, as well as the range of DNA modifications it is capable of. Finally, the hazards posed by both technologies, as well as how those concerned have chosen to deal with them, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G, Corn JE, Daley GQ, Doudna JA, Fenner M et al (2015) Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science 348:36–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casini A, Storch M, Baldwin GS, Ellis T (2015) Bricks and blueprints: methods and standards for DNA assembly. Nat Rev Mol Cell Biol 16:568–576

    Article  CAS  PubMed  Google Scholar 

  • Doudna J (2015) Genome-editing revolution: my whirlwind year with CRISPR. Nature 528:469–471

    Article  CAS  PubMed  Google Scholar 

  • Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Article  PubMed  Google Scholar 

  • Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V, Saad AF, Li MK, Hughes MR, Werff RV et al (2015) Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun 6:8715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G, Mis M, Zimmermann M, Fradet-Turcotte A, Sun S et al (2015) High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163:1515–1526

    Article  CAS  PubMed  Google Scholar 

  • Ho-Shing O, Lau KH, Vernon W, Eckdahl TT, Campbell AM (2012) Assembly of standardized DNA parts using BioBrick ends in E. coli. Methods Mol Biol 852:61–76

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  • Lanphier E, Urnov F, Haecker SE, Werner M, Smolenski J (2015) Don’t edit the human germ line. Nature 519:410–411

    Article  CAS  PubMed  Google Scholar 

  • Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y et al (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6:363–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merkle FT, Neuhausser WM, Santos D, Valen E, Gagnon JA, Maas K, Sandoe J, Schier AF, Eggan K (2015) Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus. Cell Rep 11:875–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87

    Article  CAS  PubMed  Google Scholar 

  • Shetty RP, Endy D, Knight TF Jr (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Guell M, Niu D, George H, Lesha E, Grishin D, Aach J, Shrock E, Xu W, Poci J et al (2015) Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350:1101–1104

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Lei R, Le Duff Y, Li J, Guo F, Wainberg MA, Liang C (2015) The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology 12:22

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ehmoser-Sinner, EK., Tan, CW.D. (2018). The Tools. In: Lessons on Synthetic Bioarchitectures. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-73123-0_5

Download citation

Publish with us

Policies and ethics