Skip to main content

Patrolling a Path Connecting a Set of Points with Unbalanced Frequencies of Visits

  • Conference paper
  • First Online:
SOFSEM 2018: Theory and Practice of Computer Science (SOFSEM 2018)

Abstract

Patrolling consists of scheduling perpetual movements of a collection of mobile robots, so that each point of the environment is regularly revisited by any robot in the collection. In previous research, it was assumed that all points of the environment needed to be revisited with the same minimal frequency.

In this paper we study efficient patrolling protocols for points located on a path, where each point may have a different constraint on frequency of visits. The problem of visiting such divergent points was recently posed by Gąsieniec et al. in [14], where the authors study protocols using a single robot patrolling a set of n points located in nodes of a complete graph and in Euclidean spaces.

The focus in this paper is on patrolling with two robots. We adopt a scenario in which all points to be patrolled are located on a line. We provide several approximation algorithms concluding with the best currently known \(\sqrt{3}\)-approximation.

J. Czyzowicz, K. Georgiou and E. Kranakis—Research supported in part by NSERC.

L. Gąsieniec—Research supported by Networks Sciences and Technologies (NeST).

T. Jurdziński—Research supported by the Polish National Science Centre grant DEC-2012/06/M/ST6/00459.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alshamrani, S., Kowalski, D.R., Gąsieniec, L.: How reduce max algorithm behaves with symptoms appearance on virtual machines in clouds. In: Proceedings of IEEE International Conference CIT/IUCC/DASC/PICOM, pp. 1703–1710 (2015)

    Google Scholar 

  2. Baruah, S.K., Cohen, N.K., Plaxton, C.G., Varvel, D.A.: Proportionate progress: a notion of fairness in resource allocation. Algorithmica 15(6), 600–625 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baruah, S.K., Lin, S.-S.: Pfair scheduling of generalized pinwheel task systems. IEEE Trans. Comput. 47(7), 812–816 (1998)

    Article  MathSciNet  Google Scholar 

  4. Bender, M.A., Fekete, S.P., Kröller, A., Mitchell, J.S.B., Liberatore, V., Polishchuk, V., Suomela, J.: The minimum backlog problem. Theoret. Comput. Sci. 605, 51–61 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bodlaender, M.H.L., Hurkens, C.A.J., Kusters, V.J.J., Staals, F., Woeginger, G.J., Zantema, H.: Cinderella versus the wicked stepmother. In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp. 57–71. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33475-7_5

    Chapter  Google Scholar 

  6. Chan, M.Y., Chin, F.Y.L.: General schedulers for the pinwheel problem based on double-integer reduction. IEEE Trans. Comput. 41(6), 755–768 (1992)

    Article  Google Scholar 

  7. Chan, M.Y., Chin, F.: Schedulers for larger classes of pinwheel instances. Algorithmica 9(5), 425–462 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chuangpishit, H., Czyzowicz, J., Gasieniec, L., Georgiou, K., Jurdzinski, T., Kranakis, E.: Patrolling a path connecting set of points with unbalanced frequencies of visits (2012). http://arxiv.org/abs/1710.00466

  9. Chrobak, M., Csirik, J., Imreh, C., Noga, J., Sgall, J., Woeginger, G.J.: The buffer minimization problem for multiprocessor scheduling with conflicts. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 862–874. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5_70

    Chapter  Google Scholar 

  10. Collins, A., Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Martin, R., Morales Ponce, O.: Optimal patrolling of fragmented boundaries. In: Proceedings of the Twenty-fifth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2013, New York, USA, pp. 241–250 (2013)

    Google Scholar 

  11. Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23719-5_59

    Chapter  Google Scholar 

  12. Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.: When patrolmen become corrupted: monitoring a graph using faulty mobile robots. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 343–354. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48971-0_30

    Chapter  Google Scholar 

  13. Fishburn, P.C., Lagarias, J.C.: Pinwheel scheduling: achievable densities. Algorithmica 34(1), 14–38 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gąsieniec, L., Klasing, R., Levcopoulos, C., Lingas, A., Min, J., Radzik, T.: Bamboo garden trimming problem (perpetual maintenance of machines with different attendance urgency factors). In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 229–240. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0_18

    Chapter  Google Scholar 

  15. Holte, R., Mok, A., Rosier, L., Tulchinsky, I., Varvel, D.: The pinwheel: a real-time scheduling problem. In: II: Software Track, Proceedings of the Twenty-Second Annual Hawaii International Conference on System Sciences, vol. 2, pp. 693–702, January 1989

    Google Scholar 

  16. Holte, R., Rosier, L., Tulchinsky, I., Varvel, D.: Pinwheel scheduling with two distinct numbers. Theoret. Comput. Sci. 100(1), 105–135 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct speeds. Distrib. Comput. 28(2), 147–154 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liang, D., Shen, H.: Point sweep coverage on path. Unpublished work https://arxiv.org/abs/1704.04332

  19. Lin, S.-S., Lin, K.-J.: A pinwheel scheduler for three distinct numbers with a tight schedulability bound. Algorithmica 19(4), 411–426 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ntafos, S.: On gallery watchmen in grids. Inf. Process. Lett. 23(2), 99–102 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. O’Rourke, J.: Art Gallery Theorems and Algorithms, vol. 57. Oxford University Press, Oxford (1987)

    MATH  Google Scholar 

  22. Romer, T.H., Rosier, L.E.: An algorithm reminiscent of Euclidean-gcd for computing a function related to pinwheel scheduling. Algorithmica 17(1), 1–10 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems. SIAM J. Discret. Math. 2(4), 550–581 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Urrutia, J.: Art gallery and illumination problems. Handbook Comput. Geom. 1(1), 973–1027 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Kranakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chuangpishit, H., Czyzowicz, J., Gąsieniec, L., Georgiou, K., Jurdziński, T., Kranakis, E. (2018). Patrolling a Path Connecting a Set of Points with Unbalanced Frequencies of Visits. In: Tjoa, A., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds) SOFSEM 2018: Theory and Practice of Computer Science. SOFSEM 2018. Lecture Notes in Computer Science(), vol 10706. Edizioni della Normale, Cham. https://doi.org/10.1007/978-3-319-73117-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73117-9_26

  • Published:

  • Publisher Name: Edizioni della Normale, Cham

  • Print ISBN: 978-3-319-73116-2

  • Online ISBN: 978-3-319-73117-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics