Neuroanatomy and Neuropathology

  • Katherine Rice Goettsche
  • Caitlin Snow
  • Jimmy Avari


Common effects of aging on the brain include reduced brain volume and weight caused by neuronal atrophy and reduced synaptic density and increase in cerebrospinal fluid volume. The thalamus and hypothalamus are particularly vulnerable to effects of aging. Neuron number is relatively preserved in healthy aging. Patterns of atrophy and neuropathological changes differentiate normal from various types of pathologic aging. The anterior hippocampus shows marked atrophy in patients with Alzheimer’s disease compared with healthy aging.


Atrophy Neuritic plaque Neurofibrillary tangle Hirano body Granulovacuolar degeneration 


  1. 1.
    Bishop NA, Lu T, Yankner BA. Neural mechanisms of ageing and cognitive decline. Nature. 2010;464:529–35.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kemper TL. Neuroanatomical and Neuropathological changes during aging and dementia. In: Albert ML, Knoefel JE, editors. Clinical neurology of aging. 2nd ed. New York, NY: Oxford University Press; 1994. p. 3–67.Google Scholar
  3. 3.
    Taylor WD, Moore SD, Chin SS. Neuroanatomy, neurophysiology, and neuropathology of aging. In: Blazer DG, Steffens DC, editors. The American Psychiatric Publishing textbook of geriatric psychiatry. 4th ed. Arlington, VA: American Psychiatric Publishing; 2009. p. 63–95.Google Scholar
  4. 4.
    Yankner BA, Lu T, Loerch P. The aging brain. Annu Rev Pathol Mech Dis. 2008;3:41–66.CrossRefGoogle Scholar
  5. 5.
    Wilson RS, Beckett LA, Barnes LL, Schneider JA, Bach J, Evans DA, Bennett DA. Individual differences in rates of change in cognitive abilities of older persons. Psychol Aging. 2002;17(2):179–93.CrossRefPubMedGoogle Scholar
  6. 6.
    Fjell AM, Walhoyd KB. Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci. 2010;21(3):187–221.CrossRefPubMedGoogle Scholar
  7. 7.
    Petersen RC, Smith G, Kokmen E, Ivnik RJ, Tangalos EG. Memory function in normal aging. Neurology. 1992;42:396–401.CrossRefPubMedGoogle Scholar
  8. 8.
    Dekabon AS. Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol. 1978;4:345–35.CrossRefGoogle Scholar
  9. 9.
    Scahill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, Fox NC. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol. 2003;60(7):989–94.CrossRefPubMedGoogle Scholar
  10. 10.
    Driscol I, Davatizikos C, An Y, Wu X, Shen D, Kraut M, Resnick SM. Longitudinal pattern of regional brain volume change differentiates normal aging from MCI. Neurology. 2009;72(22):1906–13.CrossRefGoogle Scholar
  11. 11.
    Sastry PS, Rao KSJ. Apoptosis and the nervous system. J Neurochem. 2000;74(1):1–20.CrossRefPubMedGoogle Scholar
  12. 12.
    Pakkenberg B, Pelvid D, Marner L, Bungaard MJ, Gundersen HJ, Nyengaard JR, Regeur L. Aging and the human neocortex. Exp Gerontol. 2003;38(1–2):95–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Salat DH, Kaye JA, Janowsky JS. Prefrontal gray and white matter volumes in healthy aging and Alzheimer disease. Arch Neurol. 1999;56(3):338–44.CrossRefPubMedGoogle Scholar
  14. 14.
    Burke SN, Barnes CA. Neural plasticity in the ageing brain. Nat Rev Neurosci. 2006;7:30–40.CrossRefPubMedGoogle Scholar
  15. 15.
    Liu X, Erikson C, Brun A. Cortical synaptic changes and gliosis in normal aging, Alzheimer’s disease and frontal lobe degeneration. Dementia. 1996;7(3):128–34.PubMedGoogle Scholar
  16. 16.
    Lu T, Pan Y, Kao SY, Li C, Kohane I, et al. Gene regulation and DNA damage in the ageing human brain. Nature. 2004;429:883–91.CrossRefPubMedGoogle Scholar
  17. 17.
    Bartzokis G, Cummings JL, Sultzer D, Henderson VW, Nuechterlein KH, Mintz J. White matter structural integrity in healthy aging adults and patients with Alzheimer disease: a magnetic resonance imaging study. Arch Neurol. 2003;60(3):393–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Gunning-Dizon FM, Raz N. The cognitive correlates of white matter abnormalities in normal aging: a quantitative review. Neuropsychology. 2000;14:224–32.CrossRefGoogle Scholar
  19. 19.
    Brisibe T, De Asis SJ. Neurobiological changes in aging. In: Tampi RR, Williamson D, editors. Fundamentals of geriatric psychiatry. New York, NY: Nova Science Publisher; 2013. p. 55–65.Google Scholar
  20. 20.
    Mackenzie IR. Senile plaques do not progressively accumulate with normal aging. Acta Neuropathol. 1994;87:520–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Pappolla MA, Omar RA, Sambamurti K, Anderson JP, Robakis NK. The genesis of the senile plaque. Further evidence in support of its neuronal origin. Am J Pathol. 1992;141(5):1151–9.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Serrano-Pozo A, Betensky RA, Frosch M, Hyman BT. Plaque-associated local toxicity increases over the clinical course of Alzheimer disease. Am J Pathol. 2016;186(2):375–84.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Woodhouse A, West AK, Chuckowree JA, Vickers JC, Dickson TC. Does beta-amyloid plaque formation cause structural injury to neuronal processes? Neurotox Res. 2005;7(1–2):5–15.CrossRefPubMedGoogle Scholar
  24. 24.
    Guillozet AL, Weintraub S, Mash DC, Mesulam MM. Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol. 2003;60(5):729–36.CrossRefPubMedGoogle Scholar
  25. 25.
    Markesbery WR, Schmitt FA, Kryscio RJ, Davis DG, Smith CD, Wekstein DR. Neuropathologic substrate of mild cognitive impairment. JAMA Neurol. 2006;63(1):38–46.Google Scholar
  26. 26.
    Funk KE, Mrak RE, Kuret J. Granulovacuolar degeneration (GVD) bodies of Alzheimer’s disease (AD) resemble late-stage autophagic organelles. Neuropathol Appl Neurobiol. 2011;37(3):295–306.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Griffin P, Furukawa R, Piggott C, Maselli A, Fechheimer M. Requirements for Hirano body formation. Eukaryot Cell. 2014;13(5):625–34.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hirano A. Hirano bodies and related neuronal inclusions. Neuropathol Appl Neurobiol. 1994;20:3–11.CrossRefPubMedGoogle Scholar
  29. 29.
    Brunk UT, Terman A. Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med. 2002;33(5):611–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Katherine Rice Goettsche
    • 1
  • Caitlin Snow
    • 1
  • Jimmy Avari
    • 2
  1. 1.Department of PsychiatryWeill Cornell Medical CollegeNew YorkUSA
  2. 2.Department of PsychiatryWeill Cornell Medical CollegeWhite PlainsUSA

Personalised recommendations