On Reconstructing Functions from Binary Measurements

  • Robert Calderbank
  • Anders Hansen
  • Bogdan RomanEmail author
  • Laura Thesing
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


We consider the problem of reconstructing a function from linear binary measurements. That is, the samples of the function are given by inner products with functions taking only the values 0 and 1. We consider three particular methods for this problem, the parameterized-background data-weak (PBDW) method, generalized sampling and infinite-dimensional compressed sensing. The first two methods are dependent on knowing the stable sampling rate when considering samples by Walsh function and wavelet reconstruction. We establish linearity of the stable sampling rate, which is sharp, allowing for optimal use of these methods. In addition, we provide recovery guaranties for infinite-dimensional compressed sensing with Walsh functions and wavelets.



RC acknowledges support from the Air Force Office of Scientific Research through grant FA 9550-17-1-0291. AH acknowledges support from Royal Society UK, and EPSRC UK through grant EP/L003457/1. BR acknowledges support from EPSRC UK through grants EP/N014588/1 and EP/R008272/1. LT acknowledges support from EPSRC UK through grant EP/L016516/1.


  1. 1.
    B. Adcock, A. Hansen, G. Kutyniok, J. Ma, Linear stable sampling rate: optimality of 2d wavelet reconstructions from fourier measurements. SIAM J. Math. Anal. 47(2), 1196–1233 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    B. Adcock, A. Hansen, C. Poon, Beyond consistent reconstructions: optimality and sharp bounds for generalized sampling, and application to the uniform resampling problem. SIAM J. Math. Anal. 45(5), 3132–3167 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    B. Adcock, A. Hansen, C. Poon, B. Roman, Breaking the coherence barrier: a new theory for compressed sensing. Forum Math. Sigma 5 (2017)Google Scholar
  4. 4.
    B. Adcock, A.C. Hansen, A generalized sampling theorem for stable reconstructions in arbitrary bases. J. Fourier Anal. Appl. 18(4), 685–716 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    B. Adcock, A.C. Hansen, Generalized sampling and infinite-dimensional compressed sensing. Found. Comput. Math. 16(5), 1263–1323 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    B. Adcock, A.C. Hansen, C. Poon, On optimal wavelet reconstructions from Fourier samples: linearity and universality of the stable sampling rate. Appl. Comput. Harmon. Anal. 36(3), 387–415 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    B. Adcock, A. C. Hansen, C. Poon, B. Roman, Breaking the coherence barrier: a new theory for compressed sensing, in Forum of Mathematics, Sigma, volume 5. Cambridge University Press (2017)Google Scholar
  8. 8.
    A. Aldroubi, M. Unser, A general sampling theory for nonideal acquisition devices. IEEE Trans. Signal Process. 42(11), 2915–2925 (1994)CrossRefGoogle Scholar
  9. 9.
    V. Antun, Coherence estimates between hadamard matrices and daubechies wavelets. Master’s thesis, University of Oslo (2016)Google Scholar
  10. 10.
    M. Bachmayr, A. Cohen, R. DeVore, G. Migliorati, Sparse polynomial approximation of parametric elliptic pdes. part ii: lognormal coefficients. ESAIM: Math. Modell. Numer. Anal. 51(1), 341–363 (2017)Google Scholar
  11. 11.
    R. Baraniuk, V. Cevher, M. Duarte, C. Hedge, Model-based compressive sensing. IEEE T Inf. Th. 56(4) (2010)Google Scholar
  12. 12.
    D. Baron, S. Sarvotham, R. Baraniuk, Bayesian compressive sensing via belief propagation. IEEE T Sig. Proc. 58(1) (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, P. Wojtaszczyk, Data assimilation in reduced modeling. SIAM/ASA J. Uncertain. Quantif. 5(1), 1–29 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    A. Böttcher, Infinite matrices and projection methods: in lectures on operator theory and its applications, fields inst. monogr. Amer. Math. Soc. (3), 1–72 (1996)Google Scholar
  15. 15.
    E. Candès, D. Donoho, Recovering edges in ill-posed inverse problems: optimality of curvelet frames. Ann. Statist. 30(3) (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    E. Candès, Y. Plan, A probabilistic and RIPless theory of compressed sensing. IEEE T Inf. Th. 57(11) (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    E. Candès, J. Romberg, Robust signal recovery from incomplete observations, in IEEE International Conference on Image Processing (2006)Google Scholar
  18. 18.
    E. Candès, J. Romberg, Sparsity and incoherence in compressive sampling. Inverse Problems 23(3) (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    E. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE T Inf. Th. 52(2) (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    A. Cohen, I. Daubechies, P. Vial, Wavelets on the interval and fast wavelet transforms. Comput. Harmon. Anal. 1(1), 54–81 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, H.-G. Stark, G. Teschke, The uncertainty principle associated with the continuous shearlet transform. Int. J. Wavelets Multiresolut. Inf. Process. 6(2) (2008)Google Scholar
  22. 22.
    R. DeVore, G. Petrova, P. Wojtaszczyk, Data assimilation and sampling in banach spaces. Calcolo 54(3), 963–1007 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    M. Do, M. Vetterli, The contourlet transform: an efficient directional multiresolution image representation. IEEE T Image Proc. 14(12) (2005)CrossRefGoogle Scholar
  24. 24.
    D. Donoho, Compressed sensing. IEEE T Inf. Th. 52(4) (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    D. Donoho, M. Elad, Optimally sparse representation in general (non-orthogonal) dictionaries via \(\ell _1\) minimization. Proc. Natl. Acad. Sci. USA 100 (2003)Google Scholar
  26. 26.
    D. Donoho, A. Javanmard, A. Montanari, Information-theoretically optimal compressed sensing via spatial coupling and approximate message passing. IEEE T Inf. Th. 59(11) (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    D. Donoho, A. Maleki, A. Montanari, Message-passing algorithms for compressed sensing. Proc. Natl Acad. Sci. USA 106(45) (2009)Google Scholar
  28. 28.
    M. Duarte, R. Baraniuk, Kronecker compressive sensing. IEEE T Image Proc. 21(2) (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    T. Dvorkind, Y.C. Eldar, Robust and consistent sampling. IEEE Signal Process. Lett. 16(9), 739–742 (2009)CrossRefGoogle Scholar
  30. 30.
    Y.C. Eldar, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors. J. Fourier Anal. Appl. 9(1), 77–96 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Y.C. Eldar, Sampling without Input Constraints: Consistent Reconstruction in Arbitrary Spaces (Sampling, Wavelets and Tomography, 2003)Google Scholar
  32. 32.
    Y.C. Eldar, T. Werther, General framework for consistent sampling in hilbert spaces. Int. J. Wavelets Multiresolut. Inf. Process. 3(4), 497–509 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    S. Foucart , H. Rauhut. A Mathematical Introduction to Compressive Sensing. Birkhäuser (2013)Google Scholar
  34. 34.
    S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing (Springer Science+Business Media, New York, 2013)zbMATHCrossRefGoogle Scholar
  35. 35.
    L. Gan, T. Do, and T. Tran, Fast compressive imaging using scrambled hadamard ensemble. Proc. Eur. Signal Proc. Conf. (2008)Google Scholar
  36. 36.
    E. Gauss, Walsh Funktionen für Ingenieure und Naturwissenschaftler (Springer Fachmedien, Wiesbaden, 1994)zbMATHCrossRefGoogle Scholar
  37. 37.
    T. Goldstein, L. Xu, K. Kelly, R. Baraniuk, The stone transform: multi-resolution image enhancement and real-time compressive video. arXiv:1311.3405 (2013)
  38. 38.
    K. Gröchenig, Z. Rzeszotnik, T. Strohmer, Quantitative estimates for the finite section method and banach algebras of matrices. Integr. Equ. Oper. Theory 2(67), 183–202 (2011)zbMATHGoogle Scholar
  39. 39.
    A. Hansen, On the approximation of spectra of linear operators on hilbert spaces. J. Funct. Anal. 8(254), 2092–2126 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    A.C. Hansen, On the solvability complexity index, the \(n\)-pseudospectrum and approximations of spectra of operators. J. Amer. Math. Soc. 24(1), 81–124 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    A. C. Hansen, L. Thesing, On the stable sampling rate for binary measurements and wavelet reconstruction. preprint (2017)Google Scholar
  42. 42.
    L. He, L. Carin, Exploiting structure in wavelet-based Bayesian compressive sensing. IEEE T Sig. Proc. 57(9) (2009)Google Scholar
  43. 43.
    T. Hrycak, K. Gröchenig, Pseudospectral fourier reconstruction with the modified inverse polynomial reconstruction method. J. Comput. Phys. 229(3), 933–946 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    G. Huang, H. Jiang, K. Matthews, P. Wilford, Lensless imaging by compressive sensing. IEEE Intl. Conf. Image Proc. (2013)Google Scholar
  45. 45.
    M. Khajehnejad, W. Xu, A. Avestimehr, B. Hassibi, Analyzing weighted \(\ell _1\) minimization for sparse recovery with nonuniform sparse models. IEEE T Sig Proc. 59(5) (May 2011)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    F. Krzakala, M. Mézard, F. Sausset, Y. Sun, L. Zdeborová, Statistical-physics-based reconstruction in compressed sensing. Phys. Rev. X 2 (May 2012)Google Scholar
  47. 47.
    G. Kutyniok, W.-Q. Lim, Optimal compressive imaging of fourier data. SIAM J. Imaging Sci. 11(1), 507–546 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    M. Lindner, Infinite Matrices and their Finite Sections: An Introduction to the Limit Operator Method (Birkhäuser Verlag, Basel, 2006)zbMATHGoogle Scholar
  49. 49.
    M. Lustig, D. Donoho, J. Pauly, Sparse MRI: the application of compressed sensing for rapid MRI imaging. Magn. Reson. Imaging 58(6) (2007)CrossRefGoogle Scholar
  50. 50.
    J. Ma, Generalized sampling reconstruction from fourier measurements using compactly supported shearlets. Appl. Comput. Harmon. Anal. (2015)Google Scholar
  51. 51.
    Y. Maday, A.T. Patera, J.D. Penn, M. Yano, A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics. Int. J. Numer. Methods Eng. 102(5), 933–965 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    S. Mallat, A Wavelet Tour of Signal Processing (Academic Press, San Diego, 1998)zbMATHGoogle Scholar
  53. 53.
    S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, 3nd edn. (Academic Press, 2009)Google Scholar
  54. 54.
    D. Needell, J. Tropp, CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmonic Anal. 26(3) (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    C. Poon, Structure dependent sampling in compressed sensing: theoretical guarantees for tight frames. Appl. Comput. Harmonic Anal. 42(3), 402–451 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    J. Romberg, Imaging via compressive sampling. IEEE Sig. Proc. Mag. 25(2) (2008)CrossRefGoogle Scholar
  57. 57.
    S. Som, P. Schniter, Compressive imaging using approximate message passing and a markov-tree prior. IEEE T Sig. Proc. 60(7) (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    V. Studer, J. Bobin, M. Chahid, H.S. Mousavi, E. Candes, M. Dahan, Compressive fluorescence microscopy for biological and hyperspectral imaging. Proc. Natl Acad. Sci. 109(26), E1679–E1687 (2012)CrossRefGoogle Scholar
  59. 59.
    L. Thesing, A. Hansen. Non uniform recovery guarantees for binary measurements and wavelet reconstruction. To appearGoogle Scholar
  60. 60.
    L. Thesing, A. Hansen, Linear reconstructions and the analysis of the stable sampling rate. Sampl. Theory Image Process. 17(1), 103–126 (2018)MathSciNetzbMATHGoogle Scholar
  61. 61.
    J. Tropp, Greed is good: algorithmic results for sparse approximation. IEEE T Inf. Th. 50(10) (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    J. Tropp, Just relax: convex programming methods for identifying sparse signals in noise. IEEE T Inf. Th. 52(3) (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Y. Tsaig, D. Donoho, Extensions of compressed sensing. Signal Process 86, 3 (2006)zbMATHCrossRefGoogle Scholar
  64. 64.
    M. Unser, J. Zerubia, A generalized sampling theory without band-limiting constraints. IEEE Trans. Circuits Syst. II. 45(8), 959–969 (1998)zbMATHCrossRefGoogle Scholar
  65. 65.
    Y. Wu, S. Verdu, Rényi information dimension: fundamental limits of almost lossless analog compression. IEEE T Inf. Th. 56(8) (2010)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Robert Calderbank
    • 1
  • Anders Hansen
    • 2
  • Bogdan Roman
    • 3
    Email author
  • Laura Thesing
    • 2
  1. 1.Department of Electrical and Computer EngineeringDuke UniversityDurhamUSA
  2. 2.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK
  3. 3.Department of Pure Mathematics and Mathematical StatisticsUniversity of CambridgeCambridgeUK

Personalised recommendations