Advertisement

Quantized Compressed Sensing: A Survey

  • Sjoerd DirksenEmail author
Chapter
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

The field of quantized compressed sensing investigates how to jointly design a measurement matrix, quantizer, and reconstruction algorithm in order to accurately reconstruct low-complexity signals from a minimal number of measurements that are quantized to a finite number of bits. In this short survey, we give an overview of the state-of-the-art rigorous reconstruction results that have been obtained for three popular quantization models: one-bit quantization, uniform scalar quantization, and noise-shaping methods.

Notes

Acknowledgements

It is a pleasure to thank the anonymous reviewer, Rayan Saab, and especially Laurent Jacques for many comments that improved this book chapter. This work was supported by the DFG through the project Quantized Compressive Spectrum Sensing (QuaCoSS), which is part of the Priority Program SPP 1798 Compressive Sensing in Information Processing (COSIP).

References

  1. 1.
    A. Ai, A. Lapanowski, Y. Plan, R. Vershynin, One-bit compressed sensing with non-Gaussian measurements. Linear Algebr. Appl. 441, 222–239 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    U. Ayaz, S. Dirksen, H. Rauhut, Uniform recovery of fusion frame structured sparse signals. Appl. Comput. Harmon. Anal. 41(2), 341–361 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    R. Baraniuk, S. Foucart, D. Needell, Y. Plan, M. Wootters, One-bit compressive sensing of dictionary-sparse signals. Inf. Inference: A J. IMA 7(1), 83–104 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    R.G. Baraniuk, S. Foucart, D. Needell, Y. Plan, M. Wootters, Exponential decay of reconstruction error from binary measurements of sparse signals. IEEE Trans. Inf. Theory 63(6), 3368–3385 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    P.T. Boufounos, R.G. Baraniuk, 1-bit compressive sensing, in 2008 42nd Annual Conference on Information Sciences and Systems (IEEE 2008), pp. 16–21Google Scholar
  6. 6.
    P. T. Boufounos, L. Jacques, F. Krahmer, R. Saab, Quantization and compressive sensing, in Compressed Sensing and its Applications (Springer, 2015), pp. 193–237Google Scholar
  7. 7.
    J. Bourgain, An improved estimate in the restricted isometry problem, in Geometric Aspects of Functional Analysis, ed. B. Klartag, E. Milman, volume 2116 of Lecture Notes in Mathematics (Springer International Publishing, 2014), pp. 65–70Google Scholar
  8. 8.
    E.J. Candès, J., T. Tao, J.K. Romberg, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52(2), 489–509 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    E.J. Candès, J.K. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59(8), 1207–1223 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    E. Chou, Beta-duals of frames and applications to problems in quantization. PhD thesis, New York University (2013)Google Scholar
  11. 11.
    E. Chou, C.S. Güntürk, Distributed noise-shaping quantization: I. Beta duals of finite frames and near-optimal quantization of random measurements. Constr. Approx. 44(1), 1–22 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    E. Chou, C. S. Güntürk, Distributed noise-shaping quantization: II. Classical frames, in Excursions in Harmonic Analysis, Volume 5 (Springer, 2017), pp. 179–198Google Scholar
  13. 13.
    E. Chou, C. S. Güntürk, F. Krahmer, R. Saab, Ö. Yılmaz, Noise-shaping quantization methods for frame-based and compressive sampling systems, in Sampling Theory, a Renaissance (Springer, 2015), pp. 157–184Google Scholar
  14. 14.
    I. Daubechies, R. DeVore, Approximating a bandlimited function using very coarsely quantized data: A family of stable sigma-delta modulators of arbitrary order. Ann. Math. 158(2), 679–710 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    M.A. Davenport, J. Romberg, An overview of low-rank matrix recovery from incomplete observations. IEEE J. Sel. Top. Signal Process. 10(4), 608–622 (2016)CrossRefGoogle Scholar
  16. 16.
    P. Deift, F. Krahmer, C.S. Güntürk, An optimal family of exponentially accurate one-bit sigma-delta quantization schemes. Commun. Pure Appl. Math. 64(7), 883–919 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    S. Dirksen, Dimensionality reduction with subgaussian matrices: a unified theory. Found. Comput. Math. 16(5), 1367–1396 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    S. Dirksen, H.C. Jung, H. Rauhut, One-bit compressed sensing with Gaussian circulant matrices. arXiv:1710.03287 (2017)
  19. 19.
    S. Dirksen, G. Lecué, H. Rauhut, On the gap between restricted isometry properties and sparse recovery conditions. IEEE Trans. Inform. Theory 64(8), 5478–5487 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    S. Dirksen, S. Mendelson, Non-gaussian hyperplane tessellations and robust one-bit compressed sensing. arXiv:1805.09409
  21. 21.
    S. Dirksen, S. Mendelson, Robust one-bit compressed sensing with partial circulant matrices. arXiv:1812.06719
  22. 22.
    S. Dirksen, S. Mendelson. Unpublished manuscriptGoogle Scholar
  23. 23.
    D.L. Donoho, Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    A. Eftekhari, M.B. Wakin, New analysis of manifold embeddings and signal recovery from compressive measurements. Appl. Comput. Harmon. Anal. 39(1), 67–109 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    J.-M. Feng, F. Krahmer, An RIP-based approach to \(\varSigma \varDelta \) quantization for compressed sensing. IEEE Signal Process. Lett. 21(11), 1351–1355 (2014)CrossRefGoogle Scholar
  26. 26.
    J.-M. Feng, F. Krahmer, R. Saab, Quantized compressed sensing for partial random circulant matrices. arXiv:1702.04711 (2017)
  27. 27.
    S. Foucart, Flavors of Compressive Sensing (Springer International Publishing, Cham, 2017), pp. 61–104CrossRefGoogle Scholar
  28. 28.
    S. Foucart, R. Lynch, Recovering low-rank matrices from binary measurements. Preprint (2018)Google Scholar
  29. 29.
    S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing (Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York, 2013)zbMATHCrossRefGoogle Scholar
  30. 30.
    V.K. Goyal, M. Vetterli, N.T. Thao, Quantized overcomplete expansions in \(\mathbb{R}^N\) analysis, synthesis, and algorithms. IEEE Trans. Inform. Theory 44(1), 16–31 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    R.M. Gray, D.L. Neuhoff, Quantization. IEEE Trans. Inf. Theory 44(6), 2325–2383 (1998)zbMATHCrossRefGoogle Scholar
  32. 32.
    R.M. Gray, T.G. Stockham, Dithered quantizers. IEEE Trans. Inf. Theory 39(3), 805–812 (1993)zbMATHCrossRefGoogle Scholar
  33. 33.
    C.S. Güntürk, One-bit sigma-delta quantization with exponential accuracy. Commun. Pure Appl. Math. 56(11), 1608–1630 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    C.S. Güntürk, M. Lammers, A.M. Powell, R. Saab, Ö. Yılmaz, Sobolev duals for random frames and \(\varSigma \varDelta \) quantization of compressed sensing measurements. Found. Comput. Math. 13(1), 1–36 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    I. Haviv, O. Regev, The restricted isometry property of subsampled Fourier matrices, in SODA ’16 (Philadelphia, PA, USA, 2016), pp. 288–297Google Scholar
  36. 36.
    T. Huynh, R. Saab, Fast binary embeddings, and quantized compressed sensing with structured matrices. arXiv:1801.08639 (2018)
  37. 37.
    L. Jacques, A quantized Johnson-Lindenstrauss lemma: the finding of Buffon’s needle. IEEE Trans. Inf. Theory 61(9), 5012–5027 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    L. Jacques, Error decay of (almost) consistent signal estimations from quantized gaussian random projections. IEEE Trans. Inf. Theory 62(8), 4696–4709 (2016)MathSciNetzbMATHGoogle Scholar
  39. 39.
    L. Jacques, Small width, low distortions: quantized random embeddings of low-complexity sets. IEEE Trans. Inf. Theory 63(9), 5477–5495 (2017)MathSciNetzbMATHGoogle Scholar
  40. 40.
    L. Jacques, V. Cambareri, Time for dithering: fast and quantized random embeddings via the restricted isometry property. Inf. Inference: A J. IMA 6(4), 441–476 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    L. Jacques, K. Degraux, C. De Vleeschouwer, Quantized iterative hard thresholding: Bridging 1-bit and high-resolution quantized compressed sensing. arXiv:1305.1786 (2013)
  42. 42.
    L. Jacques, J.N. Laska, P.T. Boufounos, R.G. Baraniuk, Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors. IEEE Trans. Inform. Theory 59(4), 2082–2102 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    K. Knudson, R. Saab, R. Ward, One-bit compressive sensing with norm estimation. IEEE Trans. Inform. Theory 62(5), 2748–2758 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    F. Krahmer, S. Mendelson, H. Rauhut, Suprema of chaos processes and the restricted isometry property. Comm. Pure Appl. Math. 67(11), 1877–1904 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    F. Krahmer, R. Saab, Ö. Yilmaz, Sigma-delta quantization of sub-gaussian frame expansions and its application to compressed sensing. Inf. Inference 3(1), 40–58 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    J.N. Laska, P.T. Boufounos, M.A. Davenport, R.G. Baraniuk, Democracy in action: quantization, saturation, and compressive sensing. Appl. Comput. Harmonic Anal. 31(3), 429–443 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    M. Lustig, D.L. Donoho, J.M. Santos, J.M. Pauly, Compressed sensing MRI. IEEE Signal Process. Mag. 25(2), 72–82 (2008)CrossRefGoogle Scholar
  48. 48.
    S. Mendelson, Learning without concentration. J. ACM 62(3), Art. 21, 25 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    S. Mendelson, H. Rauhut, R. Ward, Improved bounds for sparse recovery from subsampled random convolutions. Ann. Appl. Probab. 28(6), 3491–3527 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    A. Montanari, N. Sun, Spectral algorithms for tensor completion. Comm. Pure Appl. Math. 71(11), 2381–2425 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    A. Moshtaghpour, L. Jacques, V. Cambareri, K. Degraux, C. De Vleeschouwer, Consistent basis pursuit for signal and matrix estimates in quantized compressed sensing. IEEE Signal Process. Lett. 23(1), 25–29 (2016)CrossRefGoogle Scholar
  52. 52.
    S. Oymak, B. Recht, Near-optimal bounds for binary embeddings of arbitrary sets. arXiv:1512.04433 (2015)
  53. 53.
    Y. Plan, R. Vershynin, One-bit compressed sensing by linear programming. Comm. Pure Appl. Math. 66(8), 1275–1297 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Y. Plan, R. Vershynin, Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach. IEEE Trans. Inform. Theory 59(1), 482–494 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Y. Plan, R. Vershynin, Dimension reduction by random hyperplane tessellations. Discrete Comput. Geom. 51(2), 438–461 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    H. Rauhut, R. Schneider, Z. Stojanac, Low rank tensor recovery via iterative hard thresholding. Linear Algebra Appl. 523, 220–262 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    L. Roberts, Picture coding using pseudo-random noise. IRE Trans. Inf. Theory 8(2), 145–154 (1962)MathSciNetCrossRefGoogle Scholar
  58. 58.
    J. Romberg, Compressive sensing by random convolution. SIAM J. Imaging Sci. 2(4), 1098–1128 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    M. Rudelson, R. Vershynin, On sparse reconstruction from Fourier and Gaussian measurements. Comm. Pure Appl. Math. 61(8), 1025–1045 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    R. Saab, R. Wang, Ö. Yılmaz, Quantization of compressive samples with stable and robust recovery. Appl. Comput. Harmonic Anal. 44(1), 123–143 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    G. Schechtman, Two observations regarding embedding subsets of Euclidean spaces in normed spaces. Adv. Math. 200(1), 125–135 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    R. Vershynin, High-Dimensional Probability (Cambridge University Press, 2018)Google Scholar
  63. 63.
    C. Xu, L. Jacques, Quantized compressive sensing with RIP matrices: the benefit of dithering. arXiv:1801.05870 (2018)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Utrecht University, Mathematical InstituteUtrechtThe Netherlands

Personalised recommendations