Skip to main content

Conditions and Assumptions of Strength Criteria

  • Chapter
  • First Online:
Book cover Equivalent Stress Concept for Limit State Analysis

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 86))

  • 700 Accesses

Abstract

The equivalent stress concept (Sect. 1.2) is an engineering tool. There are no physical principles (e.g., balance equations in Continuum Mechanics, Altenbach, Kontinuumsmechanik: Einführung in die materialunabhängigen und materialabhängigen Gleichungen, Springer, Berlin, 2015, [1]; Altenbach and Altenbach, Einführung in die Kontinuumsmechanik, Teubner, Stuttgart, 1994, [2]) underlying such a formulation. This chapter summarizes the necessary conditions and the most important plausibility assumptions providing reliable criteria for the real-life applications. In particular, recent developments of criteria are discussed as well as the need of a generalized hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    References [6, 9, 12, 19, 25, 38, 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61].

References

  1. Altenbach H (2015) Kontinuumsmechanik: Einführung in die materialunabhängigen und materialabhängigen Gleichungen, 3. Auflage. Springer, Vieweg, Berlin

    Google Scholar 

  2. Altenbach J, Altenbach H (1994) Einführung in die Kontinuumsmechanik. Teubner, Stuttgart

    MATH  Google Scholar 

  3. Altenbach H, Altenbach J, Zolochevsky A (1995) Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik. Dt. Verl. für Grundstoffindustrie, Stuttgart

    Google Scholar 

  4. Backhaus G (1983) Deformationsgesetze. Akademie, Berlin

    Google Scholar 

  5. Chen WF, Saleeb AF (1982) Elasticity and modeling. Elsevier, Amsterdam

    MATH  Google Scholar 

  6. Gol’denblat II, Kopnov VA (1968) Yield and strength criteria for structural materials (in Russ.: Kriterii prochnosti i plastichnosti konstrukzionnych materialov). Mashinostroenie, Moscow

    Google Scholar 

  7. Lebedev AA, Koval’chuk BI, Giginjak FF, Lamashevsky VP (2001) Handbook of mechanical properties of structural materials at a complex stress state. Begell House, New York

    Google Scholar 

  8. Mālmeisters A, Tamužs V, Teters G (1977) Mechanik der Polymerwerkstoffe. Akademie, Berlin

    Google Scholar 

  9. Pisarenko GS, Lebedev AA (1976) Deformation and strength of materials under complex stress state (in Russ.: Deformirovanie i prochnost’ materialov pri slozhnom naprjazhennom sostojanii). Naukowa Dumka, Kiev

    Google Scholar 

  10. Skrzypek JJ (1993) Plasticity and creep: Theory examples and problems. CRC Press, Boca Raton

    Google Scholar 

  11. Yagn YI (1933) Strength of materials: Theory and problems (in Russ.: Soprotivlenie materialov: teorja i zadachnik). Kubuch, Leningrad

    Google Scholar 

  12. Yu MH (2004) Unified strength theory and its applications. Springer, Berlin

    Book  MATH  Google Scholar 

  13. Zyczkowski M (1981) Combined loadings in the theory of plasticity. PWN-Polish Scientific Publishers, Warszawa

    MATH  Google Scholar 

  14. Altenbach H, Kolupaev VA (2009) Fundamental forms of strength hypotheses. In: Indeitcev DA, Krivtsov AM (eds) Proceedings of XXXVI Summer School Advanced Problems in Mechanics, Institute for Problems in Mechanical Engineering RAS, St. Petersburg, pp 32–45

    Google Scholar 

  15. Kolupaev VA, Yu MH, Altenbach H, Bolchoun A (2017) Comparison of strength criteria based on the measurements on concrete. J Eng Mech (ASCE). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001419

  16. Yagn YI (1931) New methods of strength prediction (in Russ.: Novye metody pascheta na prochnost’). Vestnik Inzhenerov i Tekhnikov 6:237–244

    Google Scholar 

  17. Lebedev AA (2010) Development of the theories of strength in the mechanics of materials. Strength Mater 42(5):578–592

    Article  Google Scholar 

  18. Filin AP (1975) Applied mechanics of solid deformable bodies (in Russ.: Prikladnaja Mekhanika Tverdogo Deformiruemogo Tela), vol 1, Nauka, Moscow

    Google Scholar 

  19. Brandt AM, Dzieniszewski W, Jendo S, Marks W, Owczarek S, Wasiutyński Z (1986) Criteria and methods of structural optimization. Martinus Nijhoff Publishers, PWN - Polish Scientific Publishers, Dordrecht, Warszawa

    Book  MATH  Google Scholar 

  20. Potapova LB, Yarzev VP (2005) Mechanics of materials at complex stress states. How to predict the limit stresses? (in Russ.: Mekhanika materialov pri slozhnom naprjazhennom sostojanii. Kak prognozirujut predel’nye naprjazhenija?). Mashinostroenie-1, Moscow

    Google Scholar 

  21. Jirásek M, Bažant ZP (2002) Inelastic analysis of structures. Wiley, London

    Google Scholar 

  22. Bolchoun A, Kolupaev VA, Altenbach H (2011) Convex and non-convex flow surfaces (in German: Konvexe und nichtkonvexe Fließflächen). Forsch Ingenieurwes 75(2):73–92

    Article  Google Scholar 

  23. Freudenthal AM, Gou RF (1969) Second order effects in the theory of plasticity. Acta Mech 8(1):34–52

    Article  MATH  Google Scholar 

  24. Reiner M, Abir D (eds) (1964) Second-order effects in elasticity, plasticity and fluid dynamics. Jerusalem Academic Press, Pergamon Press, Jerusalem, Oxford

    MATH  Google Scholar 

  25. Altenbach H (2010) Strength hypotheses - a never ending story. Czasopismo Techniczne (Technical Transactions) Politechniki Krakowkiej 107(20):5–15

    Google Scholar 

  26. Altenbach H (2011) Mechanics of advanced materials for lightweight structures. Proc Inst Mech Eng, Part C: J Mech Eng Sci 225(11):2481–2496

    Article  Google Scholar 

  27. Yu MH, Li JC (2012) Computational plasticity. Springer, Zhejiang University Press, Heidelberg, Hangzhou

    Book  Google Scholar 

  28. Fahlbusch NC (2015) Entwicklung und Analyse mikromechanischer Modelle zur Beschreibung des Effektivverhaltens von geschlossenzelligen Polymerschäumen, Dissertation, Fachbereich Maschinenbau der Technischen Universität Darmstadt

    Google Scholar 

  29. Narisava I (1987) Strength of polymers (in Russ.: Prochnost’ polimernyh materialov), Chimija, Moscow

    Google Scholar 

  30. Volkov SD (1959) Basics of the statistical theory of strength (in Russ.: Osnovy statisticheskoj teorii prochnosti). In: Ioffe AF, Kurdjymov GB, Zhurkov SN (eds) Nekotorye problemy prochnosti tverdogo tela, Izdatel’stvo Akademii Nauk SSSR, Moscow, Leningrad, pp 325–333

    Google Scholar 

  31. Volkov SD, Stavrov VP (1978) Statistic mechanics of composite materials (in Russ.: Statisticheskaja mekhanika kompositnykh materialov). BGU im V. I. Lenina, Minsk

    Google Scholar 

  32. Davidenkov NN (1947) In favour and against a uniform theory of strength (in Russ.: Za i protiv edinoj teorii prochnosti). Vestnik Inzhenerov i Tekhnikov 4:121–129

    Google Scholar 

  33. Burzyński W (2009) Selected passages from Włodzimierz Burzyński’s doctoral dissertation “Study on Material Effort Hypotheses” printed in Polish by the Academy of Technical Sciences, Lwów, 1928, 1–192. Eng Trans Pol Acad Sci 57(3–4):127–157

    Google Scholar 

  34. Kolupaev VA (2017) Generalized strength criteria as functions of the stress angle. J Eng Mech (ASCE) 143(9). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001322

  35. Birger IA (1977) On a criterion for fracture and plasticity (in Russ.: Ob odnom kriterii razrushenija i plastichnosti). Mekhanika Tverdogo Tela, Izvestija Akademii Nauk SSSR 4:143–150

    Google Scholar 

  36. Altenbach H, Bolchoun A, Kolupaev VA (2014) Phenomenological yield and failure criteria. In: Altenbach H, Öchsner A (eds) Plasticity of pressure-sensitive materials. Engineering Materials. Springer, Berlin, pp 49–152

    Google Scholar 

  37. Filonenko-Boroditsch MM (1960) Festigkeitslehre, vol 1. Technik, Berlin

    Google Scholar 

  38. Franklin JA (1971) Triaxial strength of rock materials. Rock Mech 3(2):86–98

    Article  Google Scholar 

  39. Kolupaev VA, Altenbach H (2010) Considerations on the Unified Strength Theory due to Mao-Hong Yu (in German: Einige Überlegungen zur Unified Strength Theory von Mao-Hong Yu). Forsch Ingenieurwes 74(3):135–166

    Google Scholar 

  40. Awaji H, Sato S (1978) A statistical theory for the fracture of brittle solids under multi-axial stresses. Int J Fract 14(1):R13–R16

    Article  Google Scholar 

  41. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: Part I - Yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99(1):2–15

    Google Scholar 

  42. Lindsey GH, Schapery RA, Williams ML, Zak AR (1963) The triaxial tension failure of viscoelastic materials. Technical Report DTIC Document ARL 63-152, California Institute of Technology Passadena, California

    Google Scholar 

  43. Oh KPL, Vardar O, Finnie I (1973) Failure of brittle solids under biaxial stresses. Int J Fract 9(3):372–375

    Article  Google Scholar 

  44. Williams ML, Schapery RA (1965) Spherical flaw instability in hydrostatic tension. Int J Fract Mech 1(1):64–72

    Article  Google Scholar 

  45. Paul B (1968b) Macroscopic plastic flow and brittle fracture. In: Liebowitz H (ed) Fracture: An advanced treatise, vol II. Academic Press, New York, pp 313–496

    Google Scholar 

  46. Altenbach H, Kolupaev VA (2014) Classical and non-classical failure criteria. In: Altenbach H, Sadowski T (eds) Failure and damage analysis of advanced materials, vol 560. International Centre for Mechanical Sciences CISM, Courses and Lectures. Springer, Wien, pp 1–66

    Google Scholar 

  47. Balandin PP (1937) On the strength hypotheses (in Russ.: K voprosu o gipotezakh prochnosti). Vestnik Inzhenerov i Tekhnikov 1:19–24

    Google Scholar 

  48. Banabic D, Bunge HJ, Pöhlandt K, Tekkaya AE (2000) Formability of metallic materials: Plastic anisotropy, formability testing, forming limits. Springer, Berlin

    Google Scholar 

  49. Burzyński W (2008) Theoretical foundations of the hypotheses of material effort, Wlodzimierz Burzyński (1900–1970), Czasopismo Techniczne (1929) 47, 1–41, Lwów, (in Polish: Teoretyczne podstawy hipotez wytężenia). Engineering Transactions, Polish Academy of Sciences 56 (Special Issue):9–45

    Google Scholar 

  50. Collins JA (1993) Failure of materials in mechanical design: Analysis, prediction, prevention. Wiley, New York

    Google Scholar 

  51. Filonenko-Boroditsch MM (1961) Mechanical theories of strength (in Russ.: Mechanicheskie teorii prochnosti). Izdatel’stvo Moskovskogo Universiteta MGU, Moscow

    Google Scholar 

  52. Mittelstedt C, Becker W (2016) Struckturmechanik ebener Laminate. Studienbereich Mechanik, Technische Universität Datmstadt, Lasertype GmbH, Darmstadt

    Google Scholar 

  53. Murzewski J, Mendera Z (1963) Yield surface of steel determined by semi-empirical method. Bulletin de L’Academie Polonaise des Sciences, Serie des sciences techniques XI(7):35–42

    Google Scholar 

  54. Ponomarev SD, Biderman VL, Likharev KK, Makushin VM, Malinin NN, Feodosjev VI (1957) Strength analysis in mechanical engineering (in Russ.: Rascety na procnost’ v masinostroenii), vol 1. Gosudarstvennoe nauchno-technicheskoe izdatel’stvo mashinostroitel’noj literaturi, Moskow

    Google Scholar 

  55. Puck A (1996) Festigkeitsanalyse von Faser-Matrix-Laminaten: Modelle für die Praxis. Hanser, München

    Google Scholar 

  56. Schürmann H (2007) Konstruieren mit Faser-Kunststoff-Verbunden. Springer, Berlin

    Google Scholar 

  57. Sendeckyj GP (1972) A brief survey of empirical multiaxial strength criteria for composites. In: Corten HT (ed) Composite materials: testing and design (second conference), ASTM STP 497, ASTM International, Philadelphia, pp 41–51

    Google Scholar 

  58. Torre C (1947) Einfluß der mittleren Hauptnormalspannung auf die Fließ- und Bruchgrenze. Österreichisches Ingenieur-Archiv I(4/5):316–342

    Google Scholar 

  59. Wilczynski AP (1992) Some relationships and limitations of tensorial polynomials strength theories. Compos Sci Technol 44(3):209–213

    Article  Google Scholar 

  60. Wu EM (1973) Phenomenological anisotropic failure criterion. In: Broutman LJ, Krock RH, Sendeckyi GP (eds) Treatise on composite materials, vol 2. Academic Press, New York, pp 353–431

    Google Scholar 

  61. Yu MH (2002) Advances in strength theories for materials under complex stress state in the 20th century. Appl Mech Rev 55(5):169–218

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Kolupaev .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kolupaev, V.A. (2018). Conditions and Assumptions of Strength Criteria. In: Equivalent Stress Concept for Limit State Analysis. Advanced Structured Materials, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-73049-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73049-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73048-6

  • Online ISBN: 978-3-319-73049-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics