Skip to main content

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 86))

  • 702 Accesses

Abstract

In order to illustrate the application of the criteria and fitting of the parameters, some measurements from the literature are analyzed. At first, the measured data for

  • gray cast iron (Coffin and Schenectady in J Appl Mech 17:233–248, 1950) [1],

  • POM (poly(oxymethylene)) (Pae in J Mater Sci 12:1209–1214, 1977) [2],

  • PVC (polyvinyl chloride) hard foam (Christensen et al. in Int J Solids Struct 39(4):973–982, 2002) [3], and

  • concrete (Lee et al. in Nucl. Eng. Des. 227(2):143–153, 2004) [4]

are shown in (Altenbach et al. Plasticity of pressure-sensitive materials. Engineering Materials. Springer, Berlin, 2014) [5] and (Kolupaev et al. J Eng Mech (ASCE), 2017) [6]. The measured data for

  • aluminum alloy (Naghdi, Rowley in J Mech Phys Solids 8:63–80, 1954) [7], (Naghdi et al. in Trans ASME J Appl Mech 6:201–209, 1958) [8],

  • PA 6 (polyamide) (unpublished),

  • EPP P 9240 (expandable polypropylene) hard foam (Münch, Mechanisches Kurzzeitverhalten von thermoplastischen Konstruktionsschaumstoffen unter mehrachsiger Beanspruchung, 2005) [9], and

  • concrete (Tasuji in The behavior of plan concrete subject to biaxial stress, 1976) [10], (Tasuji et al. in ACI J Proc 75(7):306–312, 1978) [11], (Tasuji et al. in Mag Concr Res 31(109):217–224, 1979) [12]

are fitted below. In addition, the own experimental results for PMI (polymethacrylimide) hard foams are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1 psi = 0.00689 MPa.

  2. 2.

    Charge, molar mass, and crystallinity of PA 6 were not provided.

  3. 3.

    Manufacturer Suter + Co. Maschinenbau, Basel, max. tensile force 150 kN, max. torsional moment 3400 Nm.

  4. 4.

    Definition by DeRuntz–Hoffman for four points lying under the tensile failure mode (straight line \(X-B_\mathrm {Z}\)). These points are shown red (Fig. 14.17).

References

  1. Coffin LF, Schenectady NY (1950) The flow and fracture of a brittle material. J Appl Mech 17:233–248

    Google Scholar 

  2. Pae KD (1977) The macroscopic yielding behaviour of polymers in multiaxial stress fields. J Mater Sci 12:1209–1214

    Article  Google Scholar 

  3. Christensen RM, Freeman DC, DeTeresa SJ (2002) Failure criteria for isotropic materials, Applications to low-density types. Int J Solids Struct 39(4):973–982

    Google Scholar 

  4. Lee SK, Song YC, Han SH (2004) Biaxial behavior of plain concrete of nuclear containment building. Nucl Eng Des 227(2):143–153

    Article  Google Scholar 

  5. Altenbach H, Bolchoun A, Kolupaev VA (2014) Phenomenological yield and failure criteria. In: Altenbach H, Öchsner A (eds) Plasticity of pressure-sensitive materials. Engineering Materials. Springer, Berlin, pp 49–152

    Google Scholar 

  6. Kolupaev VA, Yu MH, Altenbach H, Bolchoun A (2017) Comparison of strength criteria based on the measurements on concrete. J Eng Mech (ASCE). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001419

  7. Naghdi PM, Rowley JC (1954) An experimental study of biaxial stress-stain relations in plasticity. J Mech Phys Solids 8:63–80

    Article  Google Scholar 

  8. Naghdi PM, Essenburg F, Koff W (1958) An experimental study of initial and subsequent yield surfaces in plasticity. Trans ASME J Appl Mech 6:201–209

    Google Scholar 

  9. Münch M (2005) Mechanisches Kurzzeitverhalten von thermoplastischen Konstruktionsschaumstoffen unter mehrachsiger Beanspruchung. Institut für Werkstofftechnik, Universität Kassel, Dissertation

    Google Scholar 

  10. Tasuji ME (1976) The behavior of plan concrete subject to biaxial stress. Research Report No. 360, Department of Structural Engineering, Cornell University, Ithaca

    Google Scholar 

  11. Tasuji ME, Slate FO, Nilson AH (1978) Stress-strain response and fracture of concrete in biaxial loading. ACI J Proc 75(7):306–312

    Google Scholar 

  12. Tasuji ME, Nilson AH, Slate FO (1979) Biaxial stress-strain relationships for concrete. Mag Concr Res 31(109):217–224

    Article  Google Scholar 

  13. Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  14. Edelman F, Drucker DC (1951) Some extensions of elementary plasticity theory. J Frankl Inst 251(6):581–605

    Article  MathSciNet  Google Scholar 

  15. Bardenheier R (1982) Mechanisches Versagen von Polymerwerkstoffen: Anstrengungsbewertung mehrachsialer Spannungszustände. Hanser, München

    Google Scholar 

  16. Kolupaev VA, Bolchoun A, Altenbach H (2011) Strength hypothesis applied to hard foams, Advances in Experimental Mechanics VIII. Appl Mech Mater 70:99–104

    Google Scholar 

  17. Wolfram S (2003) The Mathematica book: The definitive best-selling presentation of Mathematica by the creator of the system. Wolfram Media, Champaign

    Google Scholar 

  18. DeRuntz JA, Hoffman O (1969) The static strength of syntactic foams. Trans ASME J Appl Mech 36:551–557

    Article  Google Scholar 

  19. Schluppkotten J (2001) Ein Beitrag zur methodischen Integration von neuen Werkstoffen in die Fahrzeugcrashberechnung. Dissertation, Institut für Verbundwerkstoffe, Kaiserslautern

    Google Scholar 

  20. Amberg J (2008) Entwicklung einer Methodik zur Bestimmung der orientierungsabhängigen thermischen Ausdehnung und Kompressibilität für die Auslegung faserverstärkter Kunststoffbauteile. Deutsches Kunststoff-Institut (DKI), Abschlussbericht für den Zeitraum 01.07.2005 bis 31.05.2008, IGF-Vorhaben 14453 N (8053)/1, Darmstadt

    Google Scholar 

  21. Sanders WS, Gibson LJ (2003) Mechanics of hollow sphere foams. Mater Sci Eng A 347:70–85

    Article  Google Scholar 

  22. Seamark MJ (1991) Use of syntactic foams of subsea buoyancy. Cell Polym 10(4):308–321

    Google Scholar 

  23. Grigoluk EI, Kabanov VV (1978) Stability of shells (in Russ.: Ustojchivost’ obolochek). Nauka, Moscow

    Google Scholar 

  24. Roark RJ, Young WC (1989) Roark’s formulas for stress and strain. McGraw-Hill, New York

    Google Scholar 

  25. ROHACELL (2010) Product information ROHACELL® IG/IG-F. Evonik Industries, Evonik Röhm GmbH, Performance Polymers Business Unit, Darmstadt. https://www.rohacell.com

  26. Kolupaev VA, Becker W, Massow H, Dierkes D (2014) Design of test specimens from hard foams for the investigation of biaxial tensile strength (in German: Auslegung von Probekörpern aus Hartschaum zur Ermittlung der biaxialen Zugfestigkeit). Forsch Ingenieurwes 78(3–4):69–86

    Google Scholar 

  27. Kolupaev VA, Becker W, Massow H, Kiegelmann EM (2015) Reliable designs in foam (in German: Mit Schaumstoffen zuverlässig konstruieren). Mag Plast Kunststoffe Int. 105(1–2):32–35

    Google Scholar 

  28. Kolupaev VA, Yu MH, Altenbach H (2016) Fitting of the strength hypotheses. Acta Mech 227(6):1533–1556

    Article  MathSciNet  MATH  Google Scholar 

  29. Bigoni D, Piccolroaz A (2004) Yield criteria for quasibrittle and frictional materials. Int J Solids Struct 41(11):2855–2878

    Article  MathSciNet  MATH  Google Scholar 

  30. Podgórski J (1985) General failure criterion for isotropic media. J Eng Mech 111(2):188–201

    Article  Google Scholar 

  31. Cowan HJ (1953) The strength of plain, reinforced and prestressed concrete under the action of combined stresses, with particular reference to the combined bending and torsion of rectangular sections. Mag Conc Res 5(14):75–86

    Article  Google Scholar 

  32. Paul B (1968b) Macroscopic plastic flow and brittle fracture. In: Liebowitz H (ed) Fracture: An advanced treatise, vol II. Academic Press, New York, pp 313–496

    Google Scholar 

  33. Brencich A, Gambarotta L (2001) Isotropic damage model with different tensile-compressive response for brittle materials. Int J Solids Struct 38(34):5865–5892

    Article  MATH  Google Scholar 

  34. Hsieh SS, Ting EC, Chen WF (1982) A plastic-fracture model for concrete. Int J Solids Struct 18(3):181–197

    Article  MATH  Google Scholar 

  35. Korsun V, Niedoriezov A, Makarenko S (2014) Comparative analysis of the strength criteria for concrete (in Russ.: Sopostavitel’nij analiz kriteriev prochnosti dlja betonov). Mod Ind Civil Constr 10(1):65–78

    Google Scholar 

  36. Lade PV (1982) Three-parameter failure criterion for concrete. J Eng Mech Div 108(5):850–863

    Google Scholar 

  37. Papanikolaou VK, Kappos AJ (2007) Confinement-sensitive plasticity constitutive model for concrete in triaxial compression. Int J Solids Struct 44(21):7021–7048

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Kolupaev .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kolupaev, V.A. (2018). Applications. In: Equivalent Stress Concept for Limit State Analysis. Advanced Structured Materials, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-73049-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73049-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73048-6

  • Online ISBN: 978-3-319-73049-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics