Skip to main content

Experiments and Equipment

  • Chapter
  • First Online:
  • 706 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 86))

Abstract

Multiaxial tests are usually intricate and not adapted to each other. In this chapter, some effective ways for material testing with the following comparison of the results are suggested. The most important multiaxial tests for hard foams are proposed and implemented. Based on these tests, recommendations for further improvements of the experiment setups are given. Open questions are listed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Vibrating mill CryoMill, Retsch GmbH, Haan with the grinding bowl 35 ml and the ball \(\oslash \)20 mm.

  2. 2.

    2K epoxy resin adhesive Araldit\(^\circledR \) 2011, Huntsman, Everberg.

  3. 3.

    e.g., abifor\(^\circledR \) 1605 (ethylene vinyl acetate E/VA with 28% VA-content, grain size until \(300\,\upmu \)m), manufacturer Abifor AG, Wutöschingen, effect of temperature 125 \(^\circ \)C during 30 min.

  4. 4.

    Material-Nr. 1.4301, X5CrNi18-10, Record Metall-Folien GmbH, Mühlheim am Main.

  5. 5.

    CASO foil bag of thickness 0.08 mm, Art.-Nr. 01220, CASO GERMANY Braukmann GmbH, Arnsberg.

References

  1. Kolupaev VA, Becker W, Massow H, Dierkes D (2014) Design of test specimens from hard foams for the investigation of biaxial tensile strength (in German: Auslegung von Probekörpern aus Hartschaum zur Ermittlung der biaxialen Zugfestigkeit). Forsch Ingenieurwes 78(3–4):69–86

    Google Scholar 

  2. Burzyński W (1929) Über die Anstrengungshypothesen. Schweizerische Bauzeitung 94(21):259–262

    Google Scholar 

  3. Burzyński W (1930) Über Anstrengungshypothesen (Reply to Sandel G. D.). Schweizerische Bauzeitung 95(7):87–88

    Google Scholar 

  4. Altenbach H, Bolchoun A, Kolupaev VA (2014) Phenomenological yield and failure criteria. In: Altenbach H, Öchsner A (eds) Plasticity of pressure-sensitive materials. Engineering Materials. Springer, Berlin, pp 49–152

    Google Scholar 

  5. Pae KD (1977) The macroscopic yielding behaviour of polymers in multiaxial stress fields. J Mater Sci 12:1209–1214

    Article  Google Scholar 

  6. ROHACELL (2010) Product information ROHACELL\(^{\textregistered }\) IG/IG-F. Evonik Industries, Evonik Röhm GmbH, Performance Polymers Business Unit, Darmstadt. http://www.rohacell.com

  7. DIN-Taschenbuch 235 (1998) Schaumstoffe - Prüfung, Anforderung, Anwendung: Normen (Kunststoffe 11). Beuth Verlag GmbH, Berlin, Wien, Zürich

    Google Scholar 

  8. ROHACELL (2010) Heat treatment of ROHACELL\(^{\textregistered }\). Evonik Industries, Evonik Röhm GmbH, Performance Polymers Business Unit, Darmstadt. http://www.rohacell.com

  9. Christensen RM, Freeman DC, DeTeresa SJ (2002) Failure criteria for isotropic materials, applications to low-density types. Int J Solids Struct 39(4):973–982

    Article  MATH  Google Scholar 

  10. DeRuntz JA, Hoffman O (1969) The static strength of syntactic foams. Trans ASME J Appl Mech 36:551–557

    Article  Google Scholar 

  11. Deshpande VS, Fleck NA (2001) Multi-axial yield behaviour of polymer foam. Acta Mat 49(10):1859–1866

    Article  Google Scholar 

  12. Gdoutos EE (2002) Failure of cellular foams under multiaxial loading. Compos Part A 33:163–176

    Article  Google Scholar 

  13. Gdoutos EE, Daniel IM, Wang KA (2001) Multiaxial characterization and modeling of a PVC cellular foam. J Thermoplast Compos Mater 14:365–373

    Article  Google Scholar 

  14. Graves FA, Nelson FC (1972) Fracture of rigid polyuretane foam under biaxial stress. In: Third Interamerican Conference on Materials Technology, Centro Regional de Ayuda Tecnica, organized be Southwest Research Institute, San Antonio, Texas, pp 503–507

    Google Scholar 

  15. Münch M, Schlimmer M (2000) Ermittlung mechanischer Kennwerte von Aluminiumschäumen. Mat-wiss u Werkstofftech 31:544–546

    Article  Google Scholar 

  16. Münch M (2005) Mechanisches Kurzzeitverhalten von thermoplastischen Konstruktionsschaumstoffen unter mehrachsiger Beanspruchung. Dissertation, Institut für Werkstofftechnik, Universität Kassel

    Google Scholar 

  17. Zaslawsky M (1973) Multiaxial-stress studies on rigid polyurethane foam. Exp Mech 13(2):70–76

    Article  Google Scholar 

  18. Kolupaev VA, Kraatz A, Moneke M, Bolchoun A (2006) Description of the multiaxial creep for hard foams (in German: Beschreibung der mehraxialen Kriechphänomene bei Hartschaumstoffen). Kautschuk, Gummi, Kunststoffe KGK 59(1–2):17–27

    Google Scholar 

  19. Kolupaev VA, Becker W, Massow H, Kiegelmann EM (2015) Reliable designs in foam (in German: Mit Schaumstoffen zuverlässig konstruieren). Mag Plast Kunststoffe Int. 105(1–2):32–35

    Google Scholar 

  20. Kraatz A (2007) Anwendung der Invariantentheorie zur Berechnung des dreidimensionalen Versagens- und Kriechverhaltens von geschlossenzelligen Schaumstoffen unter Einbeziehung der Mikrostruktur. Dissertation, Martin-Luther-Universität, Zentrum für Ingenieurwissenschaften, Halle-Wittenberg

    Google Scholar 

  21. Darkov AV, Shpiro GS (1965) Strength of materials (in Russ.: Soprotivlenie materialov). Visshaja Shkola, Moscow

    Google Scholar 

  22. Kolupaev VA (2006) 3D-Creep behaviour of parts made of non-reinforced thermoplastics (in German: Dreidimensionales Kriechverhalten von Bauteilen aus unverstärkten Thermoplasten). Dissertation, Martin-Luther-Universität Halle-Wittenberg, Halle-Saale

    Google Scholar 

  23. Fahlbusch NC, Becker W, Kolupaev VA, Geertz G (2016) Non-linear material behaviour and failure of closed-cell polymer foams. Acta Mech 227(11):3113–3121

    Article  Google Scholar 

  24. Den Hartog JP (1949) Strength of materials. Dover Publications, New York

    Google Scholar 

  25. Feodosjev VI (1970) Strtength of materials (in Russ.: Soprotivlenije materialov). Nauka, Moscow

    Google Scholar 

  26. Stassi F (1973) Yield and fracture of metals under combined stresses. Strength Mater (Problemy Prochnosti) 5(5):32–40

    Google Scholar 

  27. Timoshenko SP, Young DH (1962) Elements of strength of materials. D. van Nostrand Company, Princeton

    Google Scholar 

  28. Vesik SP (1970) Handbook of strength of materials (in Russ.: Spravochnik po soprotivleniju materialov). Budivelnik, Kiev

    Google Scholar 

  29. Viot P (2009) Hydrostatic compression on polypropylene foam. Int J Impact Eng 36(7):975–989

    Article  Google Scholar 

  30. Blohberger E (2013) Innendruckversuch. Persönliche Mitteilung

    Google Scholar 

  31. Jaeger JC, Cook NGW, Zimmerman RW (2007) Fundamentals of rock mechanics. Blackwell Publishing, Malden

    Google Scholar 

  32. Tarnopolski YM, Kinzis TJ (1981) Methods of static tests of reinforced plastics (in Russ.: Metody staticheskikh ispytanij armirowanykh plastikov). Chimija, Moscow

    Google Scholar 

  33. Widera GE, Zhao L (1999) On the determination of long-term hydrostatic strength of plastic pipe. In: Plastic pipe burst and fatique testing of PVC and HDPE pipe. Welding Research Council, WRC Bulletin 445, pp 24–45

    Google Scholar 

  34. Kossa A (2015) A new biaxial compression fixture for polymeric foams. Polymer Test 45:47–51

    Article  Google Scholar 

  35. Feodosiev VI (2005) Advanced stress and stability analysis: Worked examples. Springer, Berlin

    Google Scholar 

  36. Wästlund G (1934) Untersuchung über die Festigkeit von Beton bei Belastungen, welche örtlich auf die Oberfläche sowie an Schleifen und Abbiegungen von Bewehrungseisen wirken. Tryckeri Aktiebolaget Thule, Stockholm

    Google Scholar 

  37. Papa E, Corigliano A, Rizzi E (2001) Mechanical behaviour of a syntactic foam \(/\) glass fibre composite sandwich: Experimental results. Struct Eng Mech 12(2):169–188

    Google Scholar 

  38. Axel Products Inc (2010) Equal biaxial extension, physical testing services. Report, S. Industrial Hwy, Ann Arbor. http://www.axelproducts.com/pages/hyperelastic.html

  39. Darrell S, Gary M (1999) Multiaxial fatigue. Society of Automotive Engineers Inc., SAE International, Warrendale

    Google Scholar 

  40. Gabelli A (2006) Device for producing a biaxial state of tension. Publishing number EP0192283 (A1), European Patent Organisation. http://www.espacenet.com/index.en.htm

  41. Hainsley B, Hebbner E, Walsh N (2014) The aluminium octopus: a first of it’s kind MTS integrated biaxial tensile test fixture. Project \(\#2\): Biaxial tensile test fixture. Video, Florida State University, Mechanical Engineering. https://www.youtube.com/watch?v=8ZHEZPFN45w

  42. Lotz P (2010) Dielektrische Elastomerstapelaktoren für ein peristaltisches Fluidfördersystem. Dissertation, Fachbereich Elektrotechnik und Informationstechnik der Technischen Universität Darmstadt

    Google Scholar 

  43. Marques TMJ (2013) Ensaio biaxial sob tensões normais. Ph.D. thesis, Universidade de Aveiro, Departamento de Engenharia Mecânica

    Google Scholar 

  44. Miller J (1972) Low-cycle fatigue under biaxial strain controlled conditions. J Mater 7(3):307–314

    Google Scholar 

  45. Troshchenko V, Lebedev A, Strizhalo V, Stepanov GV (2000) Mechanical behavior of materials under different loading conditions (in Russ.: Mekhanicheskie svojstva materialov pri razlichnykh vidakh nagruzhenija). Logos, Kiew

    Google Scholar 

  46. Altenbach H, Kolupaev VA (2014) Classical and non-classical failure criteria. In: Altenbach H, Sadowski T (eds) Failure and damage analysis of advanced materials, vol 560. International Centre for Mechanical Sciences: Courses and Lectures. Springer, Wien, pp 1–66

    Google Scholar 

  47. Bert CW, Mills EJ, Hyler WS (1966) Mechanical properties of aerospace structural alloys under biaxial-stress conditions. Report AFML TR-66-229, DTIC Document AD488304, Battelle Memorial Institute, Columbus Laboratories, Wright-Patterson Air Force Base, Ohio

    Google Scholar 

  48. Kossira H (1996) Grundlagen des Leichtbaus: Einführung in die Theorie dünnwandiger stabförmiger Tragwerke. Springer, Berlin

    Book  Google Scholar 

  49. Wick R (1951) Über das St. Venant’sche Prinzip und das Abklingen von Spannungen mit der Entfernung vom Lastangriff. Dissertation, Technische Hochschule, München

    Google Scholar 

  50. Barthold FJ (1993) Theorie und Numerik zur Berechnung und Optimierung von Strukturen aus isotropen, hyperelastischen Materialien. Dissertation, Universität Hannover, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover

    Google Scholar 

  51. Kremer T (2007) Analyse und Optimierung von Kerben in Faser-Kunststoff-Verbunden: Methoden zur Analyse und Bewertung von Ausschnitten sowie werkstoff-spezifische Optimierungsverfahren. Dissertation, Technische Universität, Darmstadt

    Google Scholar 

  52. von Kármán T (1911) Festigkeitsversuche unter allseitigem Druck. Zeitschrift des VDI 55(11):1749–1757

    MATH  Google Scholar 

  53. Kolupaev VA, Bleier A, Becker W (2011) Application of the bimodal elasticity theory to the foam core of a sandwich plate (in German: Anwendung der bimodalen Elastizitätstheorie auf den Schaumkern eines Sandwiches). In: Grellmann W (ed) Tagung Deformations- und Bruchverhalten von Kunststoffen, Kunststoff-Kompetenzzentrum Halle-Merseburg, Merseburg, 28 p

    Google Scholar 

  54. ASTM D 2736-78 (1982) Standard practices for determination of hydrostatic compressive strength of rigid syntactic foam. Canceled 1984 without replacement

    Google Scholar 

  55. FORD FLTM EU-BO 052-02 (2001) Determination of water permeability of foam, Ford Motor Company

    Google Scholar 

  56. Freund D, Nover G (1995) Hydrostatic pressure tests for the permeability-formation factor relation on crystalline rocks from the KTB (Das Kontinentale Tiefbohrprogramm der Bundesrepublik Deutschland) Drilling Project. Surv Geophys 16(1):47–62

    Google Scholar 

  57. NAVISTAR TMS 6510 (2001) Urethane foam, low permeability, NAVISTAR International

    Google Scholar 

  58. Massüger L (2011) Hydrostatische Druckversuche an harten Schäumen aus PVC. Persönliche Mitteilung, Airex AG, Technical Services, Sins

    Google Scholar 

  59. Gol’dman AY (1984) Volumetric deformation of plastics (in Russ.: Ob’ëmnoje deformierivanie plastmass). Mashinostroenie, Leningrad

    Google Scholar 

  60. Gol’dman AY (1994) Prediction of the deformation properties of polymeric and composite materials. ACS Professional Reference Book. American Chemical Society, Washington

    Google Scholar 

  61. Ainbinder SB, Tyunina EL, Cirule KI (1981) Polymer properties in various stress state (in Russ.: Svojstva polimerov v razlichnikh napryazhennykh sostoyaniyakh). Chimiya, Moscow

    Google Scholar 

  62. Triantafillou TC, Zhang J, Shercliff TL, Gibson LJ, Ashby MF (1989) Failure surfaces for cellular materials under multiaxial loads - II. Comparison of models with experiment. Int J Mech Sci 31(9):665–678

    Article  Google Scholar 

  63. BS 903–5 (2004) Physical testing of rubber - Part 5: Guide to the application of rubber testing to finite element analysis. British Standard BS 903–5:2004

    Google Scholar 

  64. Peroni L, Avalle M, Peroni M (2008) The mechanical behaviour of aluminium foam structures in different loading conditions. Int J Impact Eng 35(7):644–658

    Article  MATH  Google Scholar 

  65. Gioux G, McCormack TM, Gibson LJ (2000) Failure of aluminum foams under multiaxial loads. Int J Mech Sci 42(6):1097–1117

    Article  MATH  Google Scholar 

  66. Fortes MA, Fernandes JJ, Serralheiro I, Rosa ME (1989) Experimental determination of hydrostatic compression versus volume change curves for cellular solids. J Test Eval 17(1):67–71

    Article  Google Scholar 

  67. Leo CJ, Kumruzzaman M, Wong H, Yin JH (2008) Behavior of EPS geofoam in true triaxial compression tests. Geotext Geomembr 26(2):175–180

    Google Scholar 

  68. Masso Moreu Y, Mills NJ (2004) Rapid hydrostatic compression of low-density polymeric foams. Polymer Test 23(3):313–322

    Article  Google Scholar 

  69. Viot P (2010) Behaviour of cellular material under dynamic loadings. Part 1: A macroscopic point of view. Mécanique Ind 11(1):1–23

    Google Scholar 

  70. Feng B, Xu ML, Zhao TF, Zhang ZJ, Lu TJ (2010) Triaxial extensometer for volumetric strain measurement in a hydro-compression loading test for foam materials. Meas Sci Technol 21(11):1–11

    Article  Google Scholar 

  71. Hanssen AG, Hopperstad OS, Langseth M, Ilstad H (2002) Validation of constitutive models applicable to aluminium foams. Int J Mech Sci 44(2):359–406

    Article  Google Scholar 

  72. Ruan D, Lu G, Ong LS, Wang B (2007) Triaxial compression of aluminium foams. Compos Sci Technol 67(6):1218–1234

    Article  Google Scholar 

  73. Sridhar I, Fleck NA (2005) The multiaxial yield behaviour of an aluminium alloy foam. J Mate Sci 40(15):4005–4008

    Article  Google Scholar 

  74. Bartl F, Klaus H, Dallner R, Huber O (2009) Material behaviour of a cellular composite undergoing large deformations. Int J Impact Eng 36(5):667–679

    Article  Google Scholar 

  75. Mimura K, Umeda T, Riku I, Yamashita K (2007) Development of 3-dimensional compression device and its application to clarification of densification behavior of urethane-foam. Key Eng Mater 340:409–414

    Article  Google Scholar 

  76. Shima S, Mimura K (1986) Densification behaviour of ceramic powder. Int J Mech Sci 28(1):53–59

    Article  Google Scholar 

  77. Combaz E, Bacciarini C, Charvet R, Dufour W, Dauphin F, Mortensen A (2010) Yield surface of polyurethane and aluminium replicated foam. Acta Mater 58(15):5168–5183

    Article  Google Scholar 

  78. Combaz E, Bacciarini C, Charvet R, Dufour W, Mortensen A (2011) Multiaxial yield behaviour of Al replicated foam. J Mech Phys Solids 59(9):1777–1793

    Article  Google Scholar 

  79. Shafiq M, Ayyagari RS, Ehaab M, Vural M (2015) Multiaxial yield surface of transversely isotropic foams: Part II - Experimental. J Mech Phys Solids 76:224–236

    Google Scholar 

  80. Kolupaev VA, Mönnich S, Bijanzadeh P (2011) Specimens for 2D- and 3D-tension tests of hard foams (in German: Probekörper für 2D- und 3D-Zugversuche mit harten Schäumen). In: Grellmann W (ed) Tagung Deformations- und Bruchverhalten von Kunststoffen, Kunststoff-Kompetenzzentrum Halle-Merseburg, Merseburg, 21 p

    Google Scholar 

  81. Mills NJ (2010) Deformation mechanisms and the yield surface of low-density, closed-cell polymer foams. J Mater Sci 45:5831–5843

    Article  Google Scholar 

  82. Ioffe AF (1928) The physics of crystals. McGraw-Hill, New York

    Google Scholar 

  83. Ioffe AF (1929) The physics of crystals (in Russ.: Fizika kristallov). Gosizdat, Moscow-Leningrad

    Google Scholar 

  84. Ponomarev SD, Biderman VL, Likharev KK, Makushin VM, Malinin NN, Feodosjev VI (1957) Strength analysis in mechanical engineering (in Russ.: Rascety na procnost’ v masinostroenii), vol 1. Gosudarstvennoe nauchno-technicheskoe izdatel’stvo mashinostroitel’noj literaturi, Moskow

    Google Scholar 

  85. Troshchenko VT, Krasovskij AJ, Pokrovskij VV, Sosnovskij LA, Strizhalo VA (2000) Strength of materials to deformation and fracture, Handbook (in Russ.: Soprotivlenie materialov deformirovaniju i razrusheniju. Spravochnoe posobie). Logos, Kiew

    Google Scholar 

  86. Kolupaev VA, Bolchoun A, Altenbach H (2011) Strength hypothesis applied to hard foams. Appl Mech Mater 70:99–104 (Advances in Experimental Mechanics VIII)

    Article  Google Scholar 

  87. Bich PM (1980) Strength of gypsum in hydrostatic tension. Strength Mater 12(2):234–237

    Article  Google Scholar 

  88. Calloch S, Marquis D (1997) 3D experimental and numerical investigations to test constitutive equations for nonproportional cyclic plasticity. In: Transactions of the 14th International Conference on Structural Mechanics in Reactor Technology, Lyon, vol L02\(/\)1, pp 43–50

    Google Scholar 

  89. Cridland L, Wood WG (1968) A hydrostatic tension test of a brittle material. Int J Fract Mech 4(3):277–285

    Article  Google Scholar 

  90. Hunsche U, Albrecht H (1990) Results of true triaxial strength tests on rock salt. Eng Fract Mech 35(4–5):867–877

    Article  Google Scholar 

  91. King CY, Webb WW (1971) Internal fracture of glass under triaxial tension induced by thermal shock. J Appl Phys 42(6):2386–2395

    Article  Google Scholar 

  92. Shen J, Min ZQ, Gu IC (1998) A new material test system - the true tension-compression triaxial facility. In: International Symposium on Strength Theory: Application, Development & Prospects for 21st Century, 9–11 September 1998. Science Press, New York, pp 551–556

    Google Scholar 

  93. Smith TL (1971) Fracture of polymers in biaxial and triaxial tension. J Polymer Sci Part C Polymer Symp 32(1):269–282

    Article  Google Scholar 

  94. Jenkins CF (1920) British association for the advancement of science. Eng An Illus Wkly J 110:290–292 (Address to the Engineering Section G of the British Association at Cardiff, London)

    Google Scholar 

  95. Wu EM (1973) Phenomenological anisotropic failure criterion. In: Broutman LJ, Krock RH, Sendeckyi GP (eds) Treatise on composite materials, vol 2. Academic Press, New York, pp 353–431

    Google Scholar 

  96. Rychlewski J (2011) Elastic energy decomposition and limit criteria. Eng Trans Polish Acad Sci 59(1):31–63

    Google Scholar 

  97. Schleicher F (1928) Über die Sicherheit gegen Überschreiten der Fliessgrenze bei statischer Beanspruchung. Der Bauingenieur 9(15):253–261

    Google Scholar 

  98. Dowling NE (2013) Mechanical behavior of materials: Engineering methods for deformation, fracture, and fatigue. Pearson, Boston

    Google Scholar 

  99. Gummert P, Reckling KA (1994) Mechanik. Vieweg and Sohn, Braunschweig

    Book  MATH  Google Scholar 

  100. Altenbach J, Altenbach H (1994) Einführung in die Kontinuumsmechanik. Teubner, Stuttgart

    MATH  Google Scholar 

  101. Scoble WA (1906) The strength and behaviour of ductil meterials under combined stress. Philos Mag J Sci 6(LXXII):533–547

    Article  Google Scholar 

  102. Smith CA (1909) Some experiments on solid steel under combined stress. Eng Innov Technol Manuf Manag 88:238–243

    Google Scholar 

  103. Becker F (2009) Entwicklung einer Beschreibungsmethodik für das mechanische Verhalten unverstärkter Thermoplaste bei hohen Deformationsgeschwindigkeiten. Dissertation, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale)

    Google Scholar 

  104. Junginger M (2002) Charakterisierung und Modellierung unverstärkter thermoplastischer Kunststoffe zur numerischen Simulation von Crashvorgängen. Dissertation, Universität der Bundeswehr, München

    Google Scholar 

  105. Haigh BP (1920) The strain-energy function and the elastic limit. Engineering 109:158–160

    Google Scholar 

  106. Osgood WR (1947) Combined-stress tests on 24S-T aluminium-alloy tubes. J Appl Mech 14(2):A147–A153

    Google Scholar 

  107. Altenbach H, Altenbach J, Zolochevsky A (1995) Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik. Dt. Verl. für Grundstoffindustrie, Stuttgart

    Google Scholar 

  108. Ratner SI (1949) Strength and plasticity of metals (in Russ.: Procjnost’ i plastichnost’ metallov). Oborongiz, Moscow

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Kolupaev .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kolupaev, V.A. (2018). Experiments and Equipment. In: Equivalent Stress Concept for Limit State Analysis. Advanced Structured Materials, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-73049-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73049-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73048-6

  • Online ISBN: 978-3-319-73049-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics