Skip to main content

Fitting of Criteria

  • Chapter
  • First Online:
Equivalent Stress Concept for Limit State Analysis

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 86))

  • 702 Accesses

Abstract

The objective function (Bhatti, Practical optimization methods: with mathematica applications, Springer, New York, 2000 [1]; Brandt et al, Criteria and methods of structural optimization, Martinus Nijhoff Publishers, PWN - Polish Scientific Publishers, Dordrecht, Warszawa, 1986, [2]; Rao, Engineering optimization: theory and practice. Wiley, Hoboken, 2009, [3]) for fitting of the criterion to the measured data can be formulated in many ways, which lead to different results. The following three kinds of objective functions

  • mathematical,

  • physical, and

  • geometrical

can be considered (Altenbach et al, Plasticity of pressure-sensitive materials. Springer, Berlin, pp 49–152, 2014, [4]; Kolupaev et al, Strength hypothesis applied to hard foams Appl Mech Mater, 70, 99–104, 2011, [5]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhatti MA (2000) Practical optimization methods: with Mathematica applications. Springer, New York

    Google Scholar 

  2. Brandt AM, Dzieniszewski W, Jendo S, Marks W, Owczarek S, Wasiutyński Z (1986) Criteria and methods of structural optimization. Martinus Nijhoff Publishers, PWN - Polish Scientific Publishers, Dordrecht, Warszawa

    Book  MATH  Google Scholar 

  3. Rao SS (2009) Engineering optimization: Theory and practice. Wiley, Hoboken

    Google Scholar 

  4. Altenbach H, Bolchoun A, Kolupaev VA (2014) Phenomenological yield and failure criteria. In: Altenbach H, Öchsner A (eds) Plasticity of pressure-sensitive materials. Engineering Materials. Springer, Berlin, pp 49–152

    Google Scholar 

  5. Kolupaev VA, Bolchoun A, Altenbach H (2011) Strength hypothesis applied to hard foams. Appl Mech Mater 70:99–104 Advances in Experimental Mechanics VIII

    Google Scholar 

  6. Bronstein IN, Semendjajew KA (2007) Handbook of mathematics. Springer, Berlin

    MATH  Google Scholar 

  7. Fichtenholz GM (1997) Differential- und Integralrechnung, vol 1. Harri Deutsch, Frankfurt am Main

    Google Scholar 

  8. Wu EM (1973) Phenomenological anisotropic failure criterion. In: Broutman LJ, Krock RH, Sendeckyi GP (eds) Treatise on composite materials, vol 2. Academic Press, New York, pp 353–431

    Google Scholar 

  9. Kolupaev VA (2006) 3D-Creep behaviour of parts made of non-reinforced thermoplastics (in German: Dreidimensionales Kriechverhalten von Bauteilen aus unverstärkten Thermoplasten). Dissertation, Martin-Luther-Universität Halle-Wittenberg, Halle-Saale

    Google Scholar 

  10. Kolupaev VA, Kraatz A, Moneke M, Bolchoun A (2006) Description of the multiaxial creep for hard foams (in German: Beschreibung der mehraxialen Kriechphänomene bei Hartschaumstoffen). Kautschuk, Gummi, Kunststoffe KGK 59(1–2):17–27

    Google Scholar 

  11. Chong EKP, Zak SH (2008) An introduction to optimization. Wiley, Hoboken

    Book  MATH  Google Scholar 

  12. Eschenauer H, Olhoff N, Schnell W (1997) Applied structural mechanics: Fundamentals of elasticity, load-bearing structures, structural optimization. Springer, Berlin

    Google Scholar 

  13. Papageorgiou M (1996) Optimierung: Statische, dynamische, stochastische Verfahren für die Anwendung. Oldenbourg, München

    Google Scholar 

  14. Stadler W (1988) Multicriteria optimization in engineering and the sciences, vol 37. Mathematical concepts and methods in science and engineering. Plenum Press, New York

    Book  MATH  Google Scholar 

  15. Kolupaev VA, Yu MH, Altenbach H (2016) Fitting of the strength hypotheses. Acta Mechanica 227(6):1533–1556

    Article  MathSciNet  MATH  Google Scholar 

  16. Kolupaev VA, Becker W, Massow H, Dierkes D (2014) Design of test specimens from hard foams for the investigation of biaxial tensile strength (in German: Auslegung von Probekörpern aus Hartschaum zur Ermittlung der biaxialen Zugfestigkeit). Forsch Ingenieurwes 78(3–4):69–86

    Google Scholar 

  17. Shaw MC, Sata T (1966) The plastic behavior of cellular materials. Int J Mech Sci 8:469–478

    Article  Google Scholar 

  18. Awaji H, Sato S (1978) A statistical theory for the fracture of brittle solids under multi-axial stresses. Int J Fract 14(1):R13–R16

    Article  Google Scholar 

  19. Huang PC (1986) Fracture criterion of isotropic materials. Technical Report, Naval Surface Warfare Center, DTIC Document, NAVSWC TR 90-76, Dahlgren, Virginia

    Google Scholar 

  20. McAdam DJJ (1946) Fracture of metals under combined stresses. Trans Am Soc Metal 37:538–566

    Google Scholar 

  21. Zhang T (2008) A general constitutive relation for linear elastic foams. Int J Mech Sci 50:1123–1132

    Article  MATH  Google Scholar 

  22. Yagn YI (1931) New methods of strength prediction (in Russ.: Novye metody pascheta na prochnost’). Vestnik Inzhenerov i Tekhnikov 6:237–244

    Google Scholar 

  23. DeRuntz JA, Hoffman O (1969) The static strength of syntactic foams. Trans ASME J Appl Mech 36:551–557

    Article  Google Scholar 

  24. Fahlbusch NC (2015) Entwicklung und Analyse mikromechanischer Modelle zur Beschreibung des Effektivverhaltens von geschlossenzelligen Polymerschäumen. Dissertation, Fachbereich Maschinenbau der Technischen, Universität Darmstadt

    Google Scholar 

  25. Fahlbusch NC, Kolupaev VA, Becker W (2016) Generalized limit surfaces – with an example of hard foams. In: Naumenko K, Aßmuss M (eds) Advanced methods of continuum mechanics for materials and structures, vol 60. Advanced Structured Materials. Springer Science + Business Media, Singapore, pp 337–365

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Kolupaev .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kolupaev, V.A. (2018). Fitting of Criteria. In: Equivalent Stress Concept for Limit State Analysis. Advanced Structured Materials, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-73049-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73049-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73048-6

  • Online ISBN: 978-3-319-73049-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics