Skip to main content

Generalized Pressure-Sensitive Criteria

  • Chapter
  • First Online:
  • 692 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 86))

Abstract

The second necessary condition (Sect. 8.2.1) states that all materials are pressure-sensitive, at least in the tensile region \(I_1>0\). The criteria of pressure-insensitive material behavior (Chap. 9) can only be used in the region \(I_1\le 0\) for some ductile materials, cf. Föppl and Föppl Drang und Zwang: Eine höhere Festigkeitslehre für Ingenieure. R. Oldenbourg, München, 1920 [1], Huber Specific strain work as a measure of material effort Czasopismo Techniczne, Lwów, Organ Towarzystwa Politechnicznego we Lwowie 22:34–40, 49–50, 61–62, 80–81, 1904 [2], von  Mises Mechanik des festen Körpers im plastischen deformablen Zustand Nachrichten der Königlichen Gesellschaft der Wissenschaften Göttingen, Mathematisch-physikalische Klasse 1913:589–592, 1913 [3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This substitution results if two points \(Z(1,\,1)\) and \(A_\mathrm {Z}(1/\gamma _1,\,0)\) in the normalized Burzyński-plane \((I_1/\sigma _+,\,\sqrt{3\,I_2'}/\sigma _+)\) are connected with a straight line.

  2. 2.

    The reference values for the hydrostatic nodes \(A_\mathrm {Z}\) and \(A_\mathrm {D}\) are as follows:

    • NSH—the normal stress hypothesis with \(a_+^\mathrm {hyd}=1\) (Sect. 4.1),

    • TT—lower bound for the point \(A_\mathrm {D}\) with respect to the normal stress hypothesis as trigonal trapezohedron Eq. (2.4), \(a_-^\mathrm {hyd}=d\) [12, 13], and

    • TD—lower bound for the point \(A_\mathrm {D}\) with respect to the normal stress hypothesis as triangular dipyramid \(a_-^\mathrm {hyd}=2\,d/3\) [12, 13].

    The hydrostatic nodes have been set so that the point \(A_\mathrm {D}\) is located in the region

    $$\begin{aligned} 1/\gamma _2\in [-3\,d,\,-2\,d]. \end{aligned}$$

    The triangle in the \(\pi \)-plane (Fig. 9.1, shape b) and the point \(A_\mathrm {Z}\) with

    $$\begin{aligned} \gamma _1=1/3 \end{aligned}$$

    were set on the basis of the normal stress hypothesis. The Poisson’s ratio

    $$\begin{aligned} \nu _+^\mathrm {in}=1/2 \end{aligned}$$

    defines a tangent at the point Z parallel to the hydrostatic axis (Sect. 5.4).

  3. 3.

    In this formulation, the shape of the surface in the \(\pi \)-plane is specified with \(d_\pi \) and \(k_\pi \) for the criteria of pressure-insensitive material behavior (Sect. 5.2) (Fig. 9.1, \(d-k\) diagram). Under the condition \(\nu _+^\mathrm {in}=1/2\), it follows \(d=d_\pi \) and \(k=k_\pi \) (5.9).

  4. 4.

    Theory of elasticity with different Young’s moduli \(E_+\ne E_-\) and the elastic Poisson’s ratios \(\nu _+^\mathrm {el}\ne \nu _-^\mathrm {el}\) at tension and compression [44,45,46], cf. (Sect. 2.2.2).

References

  1. Föppl A, Föppl L (1920) Drang und Zwang: Eine höhere Festigkeitslehre für Ingenieure. R. Oldenbourg, München

    MATH  Google Scholar 

  2. Huber MT (1904) Specific strain work as a measure of material effort (in Polish: Właściwa praca odkształcenia jako miara wytężenia materyału). Czasopismo Techniczne, Lwów, Organ Towarzystwa Politechnicznego we Lwowie 22:34–40, 49–50, 61–62, 80–81

    Google Scholar 

  3. von Mises R (1913) Mechanik des festen Körpers im plastischen deformablen Zustand. Nachrichten der Königlichen Gesellschaft der Wissenschaften Göttingen, Mathematisch-physikalische Klasse 1913:589–592

    Google Scholar 

  4. Altenbach H, Kolupaev VA (2014) Classical and non-classical failure criteria. In: Altenbach H, Sadowski T (eds) Failure and damage analysis of advanced materials, vol 560. International Centre for Mechanical Sciences CISM, Courses and Lectures. Springer, Wien, pp 1–66

    Google Scholar 

  5. Altenbach H, Bolchoun A, Kolupaev VA (2014) Phenomenological yield and failure criteria. In: Altenbach H, Öchsner A (eds) Plasticity of pressure-sensitive materials. Engineering Materials. Springer, Berlin, pp 49–152

    Google Scholar 

  6. Kolupaev VA, Yu MH, Altenbach H (2013) Visualisation of the unified strength theory. Arch. Appl. Mech. 83(7):1061–1085

    Article  MATH  Google Scholar 

  7. Fahlbusch NC (2015) Entwicklung und Analyse mikromechanischer Modelle zur Beschreibung des Effektivverhaltens von geschlossenzelligen Polymerschäumen. Dissertation, Fachbereich Maschinenbau der Technischen Universität Darmstadt

    Google Scholar 

  8. Fahlbusch NC, Kolupaev VA, Becker W (2016) Generalized limit surfaces – with an example of hard foams. In: Naumenko K, Aßmuss M (eds) Advanced methods of continuum mechanics for materials and structures, vol 60. Advanced Structured Materials. Springer Science + Business Media, Singapore, pp 337–365

    Google Scholar 

  9. Wu EM (1973) Phenomenological anisotropic failure criterion. In: Broutman LJ, Krock RH, Sendeckyi GP (eds) Treatise on composite materials, vol 2. Academic Press, New York, pp 353–431

    Google Scholar 

  10. Yagn YI (1931) New methods of strength prediction (in Russ.: Novye metody pascheta na prochnost’). Vestnik Inzhenerov i Tekhnikov 6:237–244

    Google Scholar 

  11. Balandin PP (1937) On the strength hypotheses (in Russ.: K voprosu o gipotezakh prochnosti). Vestnik Inzhenerov i Tekhnikov 1:19–24

    Google Scholar 

  12. Kolupaev VA, Bolchoun A, Altenbach H (2011) Geometrical-mechanical model applied to PVC-foams. In: Radusch HJ, Fiedler L (eds) 14th International Scientific Conference on Polymeric materials P, 15–17 Sept 2010, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), p 31

    Google Scholar 

  13. Kolupaev VA, Yu MH, Altenbach H (2016) Fitting of the strength hypotheses. Acta Mechanica 227(6):1533–1556

    Article  MathSciNet  MATH  Google Scholar 

  14. Barthel C, Schlimmer M (2004) Berechnung und Auslegung von Klebverbindungen (Teil 6). Adhäsion, Kleben Dichten 48(11):38–42

    Google Scholar 

  15. Christensen RM, Freeman DC, DeTeresa SJ (2002) Failure criteria for isotropic materials, applications to low-density types. Int J Solids Struct 39(4):973–982

    Article  MATH  Google Scholar 

  16. Kraatz A (2007) Anwendung der Invariantentheorie zur Berechnung des dreidimensionalen Versagens- und Kriechverhaltens von geschlossenzelligen Schaumstoffen unter Einbeziehung der Mikrostruktur. Dissertation, Martin-Luther-Universität, Zentrum für Ingenieurwissenschaften, Halle-Wittenberg

    Google Scholar 

  17. Münch M (2005) Mechanisches Kurzzeitverhalten von thermoplastischen Konstruktionsschaumstoffen unter mehrachsiger Beanspruchung. Dissertation, Institut für Werkstofftechnik, Universität Kassel

    Google Scholar 

  18. Zhang J, Lin Z, Wong A, Kikuchi N, Li VC, Yee AF, Nusholtz G (1997) Constitutive modeling and material characterization of polymeric foams. J Eng Mater Technol Trans ASME 119(3):284–291

    Article  Google Scholar 

  19. Zhang J, Kikuchi N, Li V, Yee A, Nusholtz G (1998) Constitutive modeling of polymeric foam material subjected to dynamic crash loading. Int J Impact Eng 21(5):369–386

    Article  Google Scholar 

  20. Kolupaev VA, Bolchoun A, Altenbach H (2011) Strength hypothesis applied to hard foams. Appl Mech Mater 70:99–104 (Advances in Experimental Mechanics VIII)

    Google Scholar 

  21. Li JCM, Wu JBC (1976) Pressure and normal stress effects in shear yielding. J Mater Sci 11(3):445–457

    Article  Google Scholar 

  22. Meyer JP, Labuz JF (2013) Linear failure criteria with three principal stresses. Int J Rock Mech Min Sci 60:180–187

    Google Scholar 

  23. Paul B (1968) Generalized pyramidal fracture and yield criteria. Int J Solids Struct 4(2):175–196

    Article  MATH  Google Scholar 

  24. Paul B (1968) Macroscopic plastic flow and brittle fracture. In: Liebowitz H (ed) Fracture: An advanced treatise, vol II. Academic Press, New York, pp 313–496

    Google Scholar 

  25. Wronski AS, Pick M (1977) Pyramidal yield criteria for epoxides. J Mater Sci 12(1):28–34

    Article  Google Scholar 

  26. Haythornthwaite RM (1961) The range of the yield condition in stable, ideally plastic solids. Technical Report, ORA Project 04403, University of Michigan, College of Engineering, Department of Engineering Mechanics, Detroit

    Google Scholar 

  27. Haythornthwaite RM (1961) Range of yield condition in ideal plasticity. Proc ASCE J Eng Mech Div EM6 87:117–133

    Google Scholar 

  28. Haythornthwaite RM (1962) Range of yield condition in ideal plasticity. Trans ASCE 127(1):1252–1269

    Google Scholar 

  29. Ivlev DD (1959) The theory of fracture of solids (in Russ.: K teorii razrusheniia tverdykh tel). J Appl Math Mech 23(3):884–895

    Article  MathSciNet  Google Scholar 

  30. Kolupaev VA, Bolchoun A (2008) Combined yield and fracture criteria (in German: Kombinierte Fließ- und Grenzbedingungen). Forsch Ingenieurwes 72(4):209–232

    Google Scholar 

  31. Sayir M (1970) Zur Fließbedingung der Plastizitätstheorie. Ingenieur-Archiv 39(6):414–432

    Article  MATH  Google Scholar 

  32. Kolupaev VA (2006) 3D-Creep behaviour of parts made of non-reinforced thermoplastics (in German: Dreidimensionales Kriechverhalten von Bauteilen aus unverstärkten Thermoplasten). Dissertation, Martin-Luther-Universität Halle-Wittenberg, Halle-Saale

    Google Scholar 

  33. Kolupaev VA, Altenbach H (2010) Considerations on the unified strength theory due to Mao-Hong Yu (in German: Einige Überlegungen zur Unified Strength Theory von Mao-Hong Yu). Forsch Ingenieurwes 74(3):135–166

    Google Scholar 

  34. Yu MH (2002) Advances in strength theories for materials under complex stress state in the 20th century. Appl Mech Rev 55(5):169–218

    Article  Google Scholar 

  35. Yu MH (2004) Unified strength theory and its applications. Springer, Berlin

    Book  MATH  Google Scholar 

  36. Brach S, Dormieux L, Kondo D, Vairo G (2016) Nanoporous materials with a general isotropic plastic matrix: Exact limit state under isotropic loadings. Int J Plast 1–28. https://doi.org/10.1016/j.ijplas.2016.10.007

  37. Jankowiak T, Łodygowski T (2010) Quasi-static failure criteria for concrete. Arch Civ Eng 56(2):123–154

    Google Scholar 

  38. Raniecki B, Mróz Z (2008) Yield or martensitic phase transformation conditions and dissipation functions for isotropic, pressure-insensitive alloys exhibiting SD effect. Acta Mech 195:81–102

    Article  MATH  Google Scholar 

  39. Thienel KC, Rostasy FS (1995) Strength of concrete subjected to high temperature and biaxial stress: Experiments and modelling. Mater Struct 28(10):575–581

    Google Scholar 

  40. Kolupaev VA, Yu MH, Altenbach H, Bolchoun A (2017) Comparison of strength criteria based on the measurements on concrete. J of Eng Mech (ASCE). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001419

  41. Kolupaev VA (2017) Generalized strength criteria as functions of the stress angle. J of Eng Mech (ASCE) 143(9):04017095. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001322

  42. Fan SC, Wang F (2002) A new strength criterion for concrete. ACI Struct J 99–S33(3):317–326

    Google Scholar 

  43. Fan SC, Yu MH, Yang SY (2001) On the unification of yield criteria. J Appl Mech 68(2):341–343

    Article  MATH  Google Scholar 

  44. Ambarcumyan SA (1982) Multimodulus Elasticity Theory (in Russ.: Raznomodul’naja teorija uprugosti). Nauka, Moscow

    Google Scholar 

  45. Kolupaev VA, Bleier A, Becker W (2011) Application of the bimodal elasticity theory to the foam core of a sandwich plate (in German: Anwendung der bimodalen Elastizitätstheorie auf den Schaumkern eines Sandwiches). In: Grellmann W (ed) 13 Tagung Deformations- und Bruchverhalten von Kunststoffen, Kunststoff-Kompetenzzentrum Halle-Merseburg, Merseburg, p 28

    Google Scholar 

  46. Tsvelodub IY (2008) Multimodulus elasticity theory. J Appl Mech Tech Phys 49(1):129–135

    Article  MathSciNet  MATH  Google Scholar 

  47. Altenbach H, Tushtev K (2000) An alternative formulation of a yield criterion for grey cast iron (in German: Ein alternatives Fließkriterium für Graugußeisen). Forsch Ingenieurwes 66(4):179–184

    Google Scholar 

  48. Altenbach H, Tushtev K (2001) A new static failure criterion for isotropic polymers. Mech Compos Mater 37(5–6):475–482

    Article  Google Scholar 

  49. Altenbach H, Tushtev K (2001) A new static failure criterion for isotropic polymers (in Russ.: Novij kriterij staticheskoj prochnosti isotropnikh materialov). Mekhanika Kompositnikh Materialov 37(5–6):731–742

    Google Scholar 

  50. Frąś T (2013) Modelling of plastic yield surface of materials accounting for initial anisotropy and strength differential effect on the basis of experiments and numerical simulation. Ph.D. thesis, Université de Lorraine, Ecole Nationale d’Ingénieurs de Metz (ENIM), Metz

    Google Scholar 

  51. Garnich MR, Fertig RS, Anderson EM, Deng S (2012) Micromechanics of fatigue damage in unidirectional polymer composites. In: 53rd Structures, Structural Dynamics and Materials Conference (SDM). American Institute of Aeronautics and Astronautics, Honolulu, Hawaii, 23–26 April 2012, pp 1–9

    Google Scholar 

  52. Ghorbel E (2008) A viscoplastic constitutive model for polymeric materials. Int J Plast 24(11):2032–2058

    Article  MATH  Google Scholar 

  53. Maligno AR (2008) Finite element investigations on the microstructure of composite materials. Ph.D. thesis, University of Nottingham, School of Mechanical, Materials and Manufacturing Engineering

    Google Scholar 

  54. Altenbach H, Bolchoun A, Kolupaev VA (2007) Modelling principles for the spacial material behaviour. In: 8th International Conference on Multiaxial Fatigue & Fracture ICMFF8, Sheffield Hallam University, Sheffield, pp 1–8

    Google Scholar 

  55. Shafieva SV (2014) Strength and failure criteria for natural and artificial materials with strength-differential effect (in Russ.: Kriterii prochnosti i razrushenija prirodnykh i iskusstvenno sozdanykh razhosoprotivljajushhichsja materialov). Dissertation, Almetyevsk State Oil Institute, Almetyevsk

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Kolupaev .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kolupaev, V.A. (2018). Generalized Pressure-Sensitive Criteria. In: Equivalent Stress Concept for Limit State Analysis. Advanced Structured Materials, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-73049-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73049-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73048-6

  • Online ISBN: 978-3-319-73049-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics