Skip to main content

Performance of over 100 W HVM LPP-EUV Light Source

  • Conference paper
  • First Online:
X-Ray Lasers 2016 (ICXRL 2016)

Abstract

Laser Produced Plasma (LPP) light source is widely accepted to be the most promising solution for the 13.5 nm high power light source for high volume manufacturing (HVM) EUV lithography. We have been developing LPP systems using CO2 laser and tin (Sn) target for extreme ultraviolet (EUV) light source since 2003. In the development of LPP light source, various kinds of original technologies, such as the combination of pulsed CO2 laser and Sn droplets, dual wavelength laser pulse shooting , and debris mitigation with magnetic field have been developed in Gigaphoton Inc.. By the use of Proto #2 device, 108 W EUV power (clean power at intermediate focus (I/F) in burst mode) under 80 kHz, 24 h operation was demonstrated. Currently, we are constructing the first practical source for HVM “GL200E Pilot #1” aiming for 250 W EUV output power by 27 kW pulsed CO2 laser system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Okazaki, S.: High resolution optical lithography or high throughput electron beam lithography: the technical struggle from the micro to the nano-fabrication evolution. Microelectron. Eng. 133, 23 (2015)

    Article  Google Scholar 

  2. Harned, N., et al.: EUV Lithography with the Alpha Demo Tools: status and challenges. In: Proceedings of the SPIE, 6517, 6517-06 (2007)

    Google Scholar 

  3. Miura, T., et al.: Nikon EUV1, development progress updates. In: Proceedings of SPIE No. 6921, pp. 6921-0 M (2008)

    Google Scholar 

  4. Wagner, C., et al.: EUV into production with ASML’s NXE platform. In: Proceedings of the SPIE No. 7636, 7636-1H (2010)

    Google Scholar 

  5. Wagner, C., et al.: Performance validation of ASML’s NXE3100. In: Proceedings of the SPIE No. 7969, 7969-49 (2011)

    Google Scholar 

  6. Peters, R., et al.: ASML’s NXE platform performance and volume introduction. In: Proceedings of SPIE No. 8679, 8679-50 (2013)

    Google Scholar 

  7. J. J.H. Chen.: Progress on enabling EUV lithography for high volume manufacturing. In: 2015 EUVL Symposium (2015)

    Google Scholar 

  8. Philips, M.: EUVL readiness for 7 nm. In: 2015 EUVL Symposium (2015)

    Google Scholar 

  9. Endo, A., et al.: Laser produced EUV light source development for HVM. In: Proceedings of the SPIE No.6517, 65170-O (2007)

    Google Scholar 

  10. Mizoguchi, H., et al.: 100 W 1st generation laser-produced plasma light source system for HVM. In: Proceedings of the SPIE No.7969, 7969-08 (2011)

    Google Scholar 

  11. Nishihara, K., et al.: EUV Sources for Lithography, Chap. 11. In: Bakshi, V. (ed.) (2005)

    Google Scholar 

  12. Tanaka, H., et al.: Comparative study on emission characteristics of extreme ultraviolet radiation from CO2, and Nd:YAG laser-produced tin plasmas. Appl. Phys. Lett. 87, 041503 (2005)

    Article  ADS  Google Scholar 

  13. Yanagida, T., et al.: Characterization and optimization of tin particle mitigation and EUV conversion efficiency in a laser produced plasma EUV light source. In: Proceedings of the SPIE No.7969, 7969-100 (2011)

    Google Scholar 

  14. Fujimoto, J., et al.: Development of the reliable 20 kW class pulsed carbon dioxide laser system for LPP EUV light source. In: Proceedings of the SPIE No. 7969, 7969-99 (2011)

    Google Scholar 

  15. RIGAKU Technical Display: IR rejection collector optic manufacturing process. In: 2013 EUVL Symposium (2013)

    Google Scholar 

  16. Tanino, Y., et al.: A Proposal for an EUV light source using transverse flow CO2 lasers. In: 2012 EUVL Symposium (2012)

    Google Scholar 

  17. Novak, K.M., et al.: EUV driver CO2 laser system using multi-line nano second pulse high stability master oscillator for Gigaphoton’s EUV LPP system. In: 2013 EUVL Symposium (2013)

    Google Scholar 

  18. Mizoguchi, H., et al.: Update of one hundred watt HVM LPP-EUV source performance. In: 2015 EUVL Symposium

    Google Scholar 

Download references

Acknowledgements

The work was partially supported by the New Energy and Industrial Technology Development Organization (NEDO) Japan. The authors are also grateful to Dr. J. Sunahara, Dr. K. Tomita, Prof. K. Uchino, and Dr. A. Endo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Okazaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Okazaki, S. et al. (2018). Performance of over 100 W HVM LPP-EUV Light Source. In: Kawachi, T., Bulanov, S., Daido, H., Kato, Y. (eds) X-Ray Lasers 2016. ICXRL 2016. Springer Proceedings in Physics, vol 202. Springer, Cham. https://doi.org/10.1007/978-3-319-73025-7_51

Download citation

Publish with us

Policies and ethics