Skip to main content

Polynomial Time Solvable Subclass of the Generalized Traveling Salesman Problem on Grid Clusters

  • Conference paper
  • First Online:
Book cover Analysis of Images, Social Networks and Texts (AIST 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10716))

Abstract

The Generalized Traveling Salesman Problem on Grid Clusters (GTSP-GC) is the geometric setting of the famous Generalized Traveling Salesman Problem, where the nodes of a given graph are points on the Euclidean plane and the clusters are defined implicitly by the cells of a unit grid. The problem in question is strongly NP-hard but can be approximated in polynomial time with a fixed ratio. In this paper we describe a new non-trivial polynomially solvable subclass of GTSP-GC. Providing new min-max guarantee for the optimal clustering loss in one-dimensional 2-medians problem, we show that any instance of this subclass has a quasi-pyramidal optimal route, which can be found by dynamic programming in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To the sake of brevity, we restrict ourselves to the case of undirected graphs. Our argument can be easily extended to the case of digraphs and asymmetric weighting functions w.

References

  1. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45, 753–782 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baburin, A., Della Croce, F., Gimadi, E.K., Glazkov, Y.V., Paschos, V.T.: Approximation algorithms for the 2-peripatetic salesman problem with edge weights 1 and 2. Discret. Appl. Math. 157(9), 1988–1992 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balas, E.: New classes of efficiently solvable generalized traveling salesman problems. Ann. Oper. Res. 86, 529–558 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. de Berg, M., Buchin, K., Jansen, B.M.P., Woeginger, G.: Fine-grained complexity analysis of two classic TSP variants. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), vol. 55, pp. 5:1–5:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2016). http://drops.dagstuhl.de/opus/volltexte/2016/6277

  5. Burkard, R.E., Deineko, V.G., van Dal, R., van der Veen, J.A.A., Woeginger, G.J.: Well-solvable special cases of the traveling salesman problem: a survey. SIAM Rev. 40(3), 496–546 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chentsov, A.G., Khachai, M.Y., Khachai, D.M.: Proc. Steklov Inst. Math. 295(Suppl 1), 38–46 (2016). https://doi.org/10.1134/S0081543816090054

  7. Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. In: Symposium on New Directions and Recent Results in Algorithms and Complexity, p. 441 (1975)

    Google Scholar 

  8. Enomoto, H., Oda, Y., Ota, K.: Pyramidal tours with step-backs and the asymmetric traveling salesman problem. Discret. Appl. Math. 87(1–3), 57–65 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gimadi, E.K., Glazkov, Y., Tsidulko, O.Y.: Probabilistic analysis of an algorithm for the m-planar 3-index assignment problem on single-cycle permutations. J. Appl. Ind. Math. 8(2), 208–217 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gimadi, E.K., Rykov, I.A.: On the asymptotic optimality of a solution of the euclidean problem of covering a graph by m nonadjacent cycles of maximum total weight. Dokl. Math. 93(1), 117–120 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations. Springer, Boston (2007). https://doi.org/10.1007/b101971

    Book  MATH  Google Scholar 

  12. Khachai, M., Neznakhina, E.: Approximability of the problem about a minimum-weight cycle cover of a graph. Dokl. Math. 91(2), 240–245 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khachay, M., Neznakhina, K.: Approximability of the minimum-weight k-size cycle cover problem. J. Global Optim. 66(1), 65–82 (2016). https://doi.org/10.1007/s10898-015-0391-3

    Article  MathSciNet  MATH  Google Scholar 

  14. Khachay, M., Neznakhina, K.: Towards a PTAS for the generalized TSP in grid clusters. AIP Conf. Proc. 1776(1), 050003 (2016)

    Article  Google Scholar 

  15. Klyaus, P.: Generation of testproblems for the traveling salesman problem. Preprint Inst. Mat. Akad. Nauk. BSSR (16) (1976). (in Russian)

    Google Scholar 

  16. Neznakhina, E.: PTAS for Min-\(k\)-SCCP in Euclidean space of arbitrary fixed dimension. Proc. Steklov Inst. Math. 295(1), 120–130 (2016). https://doi.org/10.1134/S0081543816090133

    Article  MathSciNet  MATH  Google Scholar 

  17. Oda, Y., Ota, K.: Algorithmic aspects of pyramidal tours with restricted jump-backs. Interdisc. Inf. Sci. 7(1), 123–133 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Pardalos, P., Du, D., Graham, R.: Handbook of Combinatorial Optimization. Springer, New York (2013)

    Book  MATH  Google Scholar 

  19. Sahni, S., Gonzales, T.: P-complete approximation problems. J. ACM 23, 555–565 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by Russian Science Foundation, project no. 14-11-00109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Khachay .

Editor information

Editors and Affiliations

A Proof of Lemma 1

A Proof of Lemma 1

Indeed, consider the following two-gamer zero-sum antagonistic game. The first player choose an n-length sample \(\xi =(p_1,\ldots ,p_n)\) from [0, 1]. The second player proposes a 2-partition \(C_1\cup C_2=[1,n]\). Payoff function

$$\begin{aligned} F(\xi ,(C_1,C_2))=\sum _{i\in C_1}|p_i-m_1|+\sum _{i\in C_2}|p_i-m_2|=\sum _{i=1}^n\min \{|p_i-m_1|,|p_i-m_2|\}, \end{aligned}$$

where \(m_1\) and \(m_2\) are medians of subsamples \(\xi _1=(p_i:i\in C_1)\) and \(\xi _2=(p_i:i\in C_2)\), respectively.

It is easy to verify that this game has no value. To obtain its lower value, notice that equation

$$\begin{aligned} \mathop {\sum }\nolimits _{i\in C}|p_i-m|={\left\{ \begin{array}{ll}\mathop {\sum }\nolimits _{i=k+1}^{2k}p_i-\sum _{i=1}^{k}p_i,&{} \text{ if } |C|=2k,\\[1ex] \mathop {\sum }\nolimits _{i=k+2}^{2k+1}p_i-\mathop {\sum }\nolimits _{i=1}^{k}p_i,&{} \text{ if } |C|=2k+1\end{array}\right. } \end{aligned}$$

is valid for any non-emplty index set C, median m, and sample

$$\begin{aligned} p_1\le p_2\le \ldots \le p_{|C|}. \end{aligned}$$

Therefore \(\sup _{\xi }\inf _{C_1,C_2}F(\xi ,(C_1,C_2))\) is an optimum of the appropriate linear program

$$\begin{aligned} \begin{array}{lll} \alpha =&{}\max &{} u\\[1ex] &{}\text{ s.t. }&{} \sum \limits _{i=\lceil |C_1|/2\rceil +1}^{|C_1|}p_i-\sum \limits _{i=1}^{\lfloor |C_1|/2\rfloor }p_i+ \sum \limits _{i=\lceil |C_2|/2\rceil +1}^{|C_2|}p_{i+|C_1|}-\sum \limits _{i=1}^{\lfloor |C_2|/2\rfloor }p_{i+|C_1|}\ge u\\[3ex] &{}&{} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad (C_1\cup C_2=[1,n])\\[1ex] &{}&{} 0\le p_1,\ldots ,p_n\le 1 \end{array} \end{aligned}$$
(9)

Using one of common linear programming techniques, e.g. variable elimination, it is easy to show that \(\alpha =n/6\). Lemma is proved.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khachay, M., Neznakhina, K. (2018). Polynomial Time Solvable Subclass of the Generalized Traveling Salesman Problem on Grid Clusters. In: van der Aalst, W., et al. Analysis of Images, Social Networks and Texts. AIST 2017. Lecture Notes in Computer Science(), vol 10716. Springer, Cham. https://doi.org/10.1007/978-3-319-73013-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73013-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73012-7

  • Online ISBN: 978-3-319-73013-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics