Skip to main content

A Machine Learning Approach to Enhanced Oil Recovery Prediction

  • Conference paper
  • First Online:
Analysis of Images, Social Networks and Texts (AIST 2017)

Abstract

In a number of computational experiments, a meta-algorithm is used to solve the problems of the oil and gas industry. Such experiments begin in the hydrodynamic simulator, where the value of the function is calculated for specific nodal values of the parameters based on the physical laws of fluid flow through porous media. Then, the values of the function are calculated, either on a more detailed set of parameter values, or for parameter values that go beyond the nodal values.

Among other purposes, such an approach is used to calculate incremental oil production resulting from the application of various methods of enhanced oil recovery (EOR).

The authors found out that in comparison with the traditional computational experiments on a regular grid, computation using machine learning algorithms could prove more productive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo, Z., Reynolds, A.C., Zhao, H.: A Physics-Based Data-Driven Model for History-Matching, Prediction and Characterization of Waterflooding Performance. Society of Petroleum Engineers. https://doi.org/10.2118/182660-MS

  2. Shehata, A.M., El-banbi, A.H., Sayyouh, H.: Guidelines to Optimize CO2 EOR in Heterogeneous Reservoirs. Society of Petroleum Engineers. https://doi.org/10.2118/151871-MS

  3. Weiser, A., Zarantonello, S.E.: A note on piecewise linear and multilinear table interpolation in many dimensions. Math. Comput. 50(181), 189–196 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ghassemzadeh, S., Charkhi, A.H.: Optimization of integrated production system using advanced proxy based models. J. Nat. Gas Sci. Eng. 35, 89–96 (2016). ISSN 1875-5100

    Article  Google Scholar 

  5. Dierckx, P.: Curve and Surface Fitting With Splines Monographs on Numerical Analysis. Oxford University Press, New York (1993)

    MATH  Google Scholar 

  6. Dyakonov, A.: Blog “Random Forest”, 14 November 2016. https://alexanderdyakonov.wordpress.com

  7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  8. Gashler, M., Giraud-Carrier, C., Martinez, T.: Decision tree ensemble: small heterogeneous is better than large homogeneous. In: The Seventh International Conference on Machine Learning and Applications, pp. 900–905 (2008). https://doi.org/10.1109/ICMLA.2008.154

  9. Opitz, D., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11, 169–198 (1999). https://doi.org/10.1613/jair.614

    MATH  Google Scholar 

  10. Pedregosa, F., et al.: Scikit-learn machine learning in python. JMLR 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Oliphant, T.E.: Python for scientific computing. Comput. Sci. Eng. 9, 10–20 (2007). https://doi.org/10.1109/MCSE.2007.58

    Article  Google Scholar 

  12. Jarrod Millman, K., Aivazis, M.: Python for scientists and engineers. Comput. Sci. Eng. 13, 9–12 (2011). https://doi.org/10.1109/MCSE.2011.36

    Article  Google Scholar 

  13. van der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011). https://doi.org/10.1109/MCSE.2011.37

    Article  Google Scholar 

  14. McKinney, W.: Data structures for statistical computing in python. In: Proceedings of the 9th Python in Science Conference, pp. 51–56 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fedor Krasnov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krasnov, F., Glavnov, N., Sitnikov, A. (2018). A Machine Learning Approach to Enhanced Oil Recovery Prediction. In: van der Aalst, W., et al. Analysis of Images, Social Networks and Texts. AIST 2017. Lecture Notes in Computer Science(), vol 10716. Springer, Cham. https://doi.org/10.1007/978-3-319-73013-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73013-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73012-7

  • Online ISBN: 978-3-319-73013-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics